- 博客(5)
- 收藏
- 关注
原创 QItemDelegate
https://blog.youkuaiyun.com/hu_linux/article/details/52791665该链接也有自定义控件用法,比较好看QT的MVC(View/Delegate)模型十分强大,可以利用各种控件来对表格的输入进行限制。思路:1:为每一列定义委托:A:第一列是编号列,使用只读委托,令该列的单元格是只读的B:第三列是ID列,只能输入1-12个数字,利用QLineEdit委托和正则表达式对输入进行限制C:第四年龄列,利用QSpinBox委托进行输入限制,只能输入1-.
2022-01-18 17:15:17
745
原创 QStandardItemModel
Qt 常用类——QStandardItemModel转载:落叶知秋时类QabstractItemModel,QabstractListModel,QAbstractTableModel不保存数据,用户需要从这些类派生出子类,并在子类中定义某种数据结构来保存数据。与此不同,类QStandardItemModel负责保存数据,每个数据项被表示为类QStandardItem的对象。接下来,我们主要从两个方面介绍类QStandardItemMode的内容。首先阐述如何使用类QStandardItem
2022-01-18 17:05:54
2719
转载 CMake 原理和方法简介
对于 C/C++的开发者而言,当涉及到复杂的第三方依赖时,工程的管理往往会变得十分棘手,尤其是还需要支持跨平台开发时。CMake 做为跨平台的编译流程管理工具,为第三方依赖查找和引入,编译系统创建,程序测试以及安装都提供了成熟的解决方案。编写一次 CMakeLists.txt 文件,执行同样的命令,在不同系统上都可以完成可执行程序或者链接库的创建。在熟悉 CMake 后,这种编译体验我认为勉强能赶上 Rust, Go 这些现代语言的一半,还有一半则是差在包管理上,这方面暂且不提。当然,如果只是做做算法题
2022-01-12 10:27:53
1110
原创 3D旋转矩阵和向量之间的关系
李群中的三维特殊正交群是一个典型的,且对应有非常直观的应用对象的群,其对应于三维空间的旋转矩阵。那么就以该正交群为例解释李群、李代数,以及两者之间的关系。三维特殊正交群与三维旋转矩阵的关系李群(Lie group)是具有群结构的光滑微分流形,其群作用与微分结构相容。李群的名字源于挪威数学家Sophus Lie[1]的姓氏,以其为连续变换群奠定基础。1893年,法文名词groupes de Lie首次出现在李的学生Arthur Tresse的论文第三页中。[2]李群中有一类矩阵李群称为“...
2021-10-14 14:11:21
810
原创 QT的官方网址
新闻http://www.qtsoftware.com/about/news下载http://www.qtsoftware.com/downloadsqt Quarterlyhttp://doc.trolltech.com/qq/qt bugshttp://www.qtsoftware.com/developer/task-trackerqt Supported Platformshttp://doc.trolltech.com/supported-platforms.html
2021-09-24 17:28:09
2735
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人