自带的机器学习库
- meas:测试数据,一行代表一个样本,列代表样本属性,N*M
- species:每个样本对应的类,N*1
- kfoldLoos:交叉验证:确定样本训练后的模型的错误率
- predict:测试集经分类模型处理后分到的类
knn分类器
knn = fitcknn(meas,species,'NumNeighbors',5);
CVMdl = crossval(knn);
kloss = kfoldLoss(CVMdl);
predict(knn,ones(1,size(meas,2)))
pca降维:主成分分析
//latent:特征值(从大到小),score特征向量
[coeff, score, latent, tsquared, explained] = pca(data);
//score即为从大到小排序后的特征矩阵,取前k列即为取样本最具代表性的k个属性
//explained即为每一列对应的影响力,所有列加起来为100
bp神经网络
svm分类器
svm = fitcsvm(meas,species);
CVMdl = crossval(svm);
kloss = kfoldLoss(CVMdl);
朴素贝叶斯
naivebayes = fitcnb(meas, species);
nb = crossval(naivebayes);
kloss = kfoldLoss(nb);
<