tensorflow如何获取tensor的真实维度

博客围绕TensorFlow展开,但具体内容缺失,推测会涉及TensorFlow在信息技术领域的应用、开发等相关知识。
部署运行你感兴趣的模型镜像

tensorflow如何获取tensor的真实维度

tensor.get_shape().as_list()

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

System.ArgumentException HResult=0x80070057 Message=Tensor must have 0 dimensions in order to convert to scalar Source=Tensorflow.Binding StackTrace: 在 Tensorflow.Tensor.EnsureScalar(Tensor tensor) 在 Tensorflow.Tensor.op_Explicit(Tensor tensor) 在 DNN_Keras.Program.Main() 在 D:\编程软件系列\VS2022社区版\文件\DNN_Keras\Program.cs 中: 第 151 行 foreach (var (step, (batch_x, batch_y)) in enumerate(dataset1, 1)) { //调用 run_optimization 方法,将当前批次的输入数据 batch_x 和标签数据 batch_y 作为参数传入。这个方法的主要功能是执行一次优化步骤,也就是依据当前批次的数据计算梯度,然后更新神经网络的参数W和b的值。 run_optimization(batch_x, batch_y); //条件判断语句, step 是当前批次的序号, display_step=100 是一个预设的整数,表示每隔多少步输出一次训练信息。当 step 是 display_step 的整数倍时,就执行下面的代码块。 if (step % 100 == 0) { //调用 model 对象的 Apply 方法,把当前批次的输入数据 batch_x 作为输入, training: true 表明当前处于训练模式。该方法会让输入数据通过神经网络,得到预测结果 pred 。 var pred = model.Apply(batch_x, training: true); //调用 cross_entropy_loss 方法,将预测结果 pred 和真实标签 batch_y 作为参数传入,计算交叉熵损失。交叉熵损失是分类问题里常用的损失函数,用于衡量预测结果和真实标签之间的差异。 var loss = cross_entropy_loss(pred, batch_y); //调用 accuracy 方法,将预测结果 pred 和真实标签 batch_y 作为参数传入,计算准确率。准确率表示预测正确的样本数占总样本数的比例。 var acc = accuracy(pred, batch_y); //输出当前批次的序号、损失值和准确率。 (float)loss 和 (float)acc 是将 loss 和 acc 转换为 float 类型,方便输出。 print($"step: {step}, loss: {(float)loss}, accuracy: {(float)acc}"); } }
最新发布
06-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值