Hi,你好。我是茶桁。
在上一节课讲SVM之后,再给大家将一个新的分类模型「决策树」。我们直接开始正题。
决策树
我们从一个例子开始,来看下面这张图:
假设我们的x1 ~ x4是特征,y是最终的决定,打比方说是买东西和不买东西,0为不买,1为买东西,假设现在y是[0,0,1,0,1]
。
那么,我们应该以哪个特征为准去判断到底y是0还是1呢?
如果关注x3,那么x3为A的时候,即有0也有1,我们先放一边找找看有没有更合适的。
如果是x4的话,肉眼可见的,区分度是最准确的对吧?B的都是都是0,C的时候都是1,那么x4也就是区分度最大的。
我们现在换成人的思维过程来说,肯定是期望先找到那个最能区分它的,就是最能识别的特征。这个最能识别的特征在数学里面有一个专门的定义:Salient feature, 就是显著特征。
如果我们更改一下x4的值,变成[B,C,C,B,B]
, 那x4也就不那么显著了。这个时候最能区分的就是x2了,只在x2[1]
的位置上判断错了一个。
这个时候