Hi,你好。我是茶桁。
咱们之前几节课的内容,从线性回归开始到最后讲到了数据集的处理。还有最后补充了SOFTMAX。
这些东西,都挺零碎的,但是又有着相互之间的关系,并且也都蛮重要的。并且是在学习机器学习过程当中比较容易忽视的一些内容。
从这节课开始呢,我要跟大家将一些其他的内容。
虽然最近几年用到的方法主要都是深度学习的方法,但是机器学习并不代表就只有深度学习这一种方法。
当然现在的深度学习其实是从线性回归演化来的,都是用一种梯度下降的方式来做。但是呢其实有很多机器学习方法用的不是这种思想。
那接下来就给大家要讲的,就是曾经非常有名,也非常有用的一些方法。这些方法的思想和用法和线性回归的机器学习不太一样。
为什么咱们现在主要用深度学习呢?之所以深度学习很火,原因就是我们的整个机器学习的模型可以像搭乐高积木一样。
比方有一个线性变化,是sigmoid,然后有一个Softmax,还有之后大家要学到什么LSTM,RNCN,还有Linear regression。他可以互相去连接,可以像玩乐高积木或者说像做电路一样,可以做出来非常复杂的模型。
那么