奉上三篇比较优秀的文章吧。
一. 什么是拷贝构造函数
首先对于普通类型的对象来说,它们之间的复制是很简单的,例如:
而类对象与普通对象不同,类对象内部结构一般较为复杂,存在各种成员变量。
下面看一个类对象拷贝的简单例子。
- #include <iostream>
- using namespace std;
-
- class CExample {
- private:
- int a;
- public:
-
- CExample(int b)
- { a = b;}
-
-
- void Show ()
- {
- cout<<a<<endl;
- }
- };
-
- int main()
- {
- CExample A(100);
- CExample B = A;
- B.Show ();
- return 0;
- }
运行程序,屏幕输出100。从以上代码的运行结果可以看出,系统为对象 B 分配了内存并完成了与对象 A 的复制过程。就类对象而言,相同类型的类对象是通过拷贝构造函数来完成整个复制过程的。
下面举例说明拷贝构造函数的工作过程。
- #include <iostream>
- using namespace std;
-
- class CExample {
- private:
- int a;
- public:
-
- CExample(int b)
- { a = b;}
-
-
- CExample(const CExample& C)
- {
- a = C.a;
- }
-
-
- void Show ()
- {
- cout<<a<<endl;
- }
- };
-
- int main()
- {
- CExample A(100);
- CExample B = A;
- B.Show ();
- return 0;
- }
CExample(const CExample& C) 就是我们自定义的拷贝构造函数。可见,拷贝构造函数是一种特殊的
构造函数,函数的名称必须和类名称一致,它必须的一个参数是本类型的一个引用变量
。
二. 拷贝构造函数的调用时机
在C++中,下面三种对象需要调用拷贝构造函数!
1. 对象以值传递的方式传入函数参数
- class CExample
- {
- private:
- int a;
-
- public:
-
- CExample(int b)
- {
- a = b;
- cout<<"creat: "<<a<<endl;
- }
-
-
- CExample(const CExample& C)
- {
- a = C.a;
- cout<<"copy"<<endl;
- }
-
-
- ~CExample()
- {
- cout<< "delete: "<<a<<endl;
- }
-
- void Show ()
- {
- cout<<a<<endl;
- }
- };
-
-
- void g_Fun(CExample C)
- {
- cout<<"test"<<endl;
- }
-
- int main()
- {
- CExample test(1);
-
- g_Fun(test);
-
- return 0;
- }
调用g_Fun()时,会产生以下几个重要步骤:
(1).test对象传入形参时,会先会产生一个临时变量,就叫 C 吧。
(2).然后调用拷贝构造函数把test的值给C。 整个这两个步骤有点像:CExample C(test);
(3).等g_Fun()执行完后, 析构掉 C 对象。
2. 对象以值传递的方式从函数返回
- class CExample
- {
- private:
- int a;
-
- public:
-
- CExample(int b)
- {
- a = b;
- }
-
-
- CExample(const CExample& C)
- {
- a = C.a;
- cout<<"copy"<<endl;
- }
-
- void Show ()
- {
- cout<<a<<endl;
- }
- };
-
-
- CExample g_Fun()
- {
- CExample temp(0);
- return temp;
- }
-
- int main()
- {
- g_Fun();
- return 0;
- }
当g_Fun()函数执行到return时,会产生以下几个重要步骤:
(1). 先会产生一个临时变量,就叫XXXX吧。
(2). 然后调用拷贝构造函数把temp的值给XXXX。整个这两个步骤有点像:CExample XXXX(temp);
(3). 在函数执行到最后先析构temp局部变量。
(4). 等g_Fun()执行完后再析构掉XXXX对象。
3. 对象需要通过另外一个对象进行初始化;
- CExample A(100);
- CExample B = A;
-
后两句都会调用拷贝构造函数。
三. 浅拷贝和深拷贝
1. 默认拷贝构造函数
很多时候在我们都不知道拷贝构造函数的情况下,传递对象给函数参数或者函数返回对象都能很好的进行,这是因为编译器会给我们自动产生一个拷贝构造函数,这就是“默认拷贝构造函数”,这个构造函数很简单,仅仅使用“老对象”的数据成员的值对“新对象”的数据成员一一进行赋值,它一般具有以下形式:
- Rect::Rect(const Rect& r)
- {
- width = r.width;
- height = r.height;
- }
当然,以上代码不用我们编写,编译器会为我们自动生成。但是如果认为这样就可以解决对象
的复制问题,那就错了,让我们来考虑以下一段代码:
- class Rect
- {
- public:
- Rect()
- {
- count++;
- }
- ~Rect()
- {
- count--;
- }
- static int getCount()
- {
- return count;
- }
- private:
- int width;
- int height;
- static int count;
- };
-
- int Rect::count = 0;
-
- int main()
- {
- Rect rect1;
- cout<<"The count of Rect: "<<Rect::getCount()<<endl;
-
- Rect rect2(rect1);
- cout<<"The count of Rect: "<<Rect::getCount()<<endl;
-
- return 0;
- }
这段代码对前面的类,加入了一个静态成员,目的是进行计数。在主函数中,首先创建对象rect1,输出此时的对象个数,然后使用rect1复制出对象rect2,再输出此时的对象个数,按照理解,此时应该有两个对象存在,但实际程序运行时,输出的都是1,反应出只有1个对象。此外,在销毁对象时,由于会调用销毁两个对象,类的析构函数会调用两次,此时的计数器将变为负数。
说白了,就是拷贝构造函数没有处理静态数据成员。
出现这些问题最根本就在于在复制对象时,计数器没有递增,我们重新编写拷贝构造函数,如下:
- class Rect
- {
- public:
- Rect()
- {
- count++;
- }
- Rect(const Rect& r)
- {
- width = r.width;
- height = r.height;
- count++;
- }
- ~Rect()
- {
- count--;
- }
- static int getCount()
- {
- return count;
- }
- private:
- int width;
- int height;
- static int count;
- };
2. 浅拷贝
所谓浅拷贝,指的是在对象复制时,只对对象中的数据成员进行简单的赋值,默认拷贝构造函数执行的也是浅拷贝。大多情况下“浅拷贝”已经能很好地工作了,但是一旦对象存在了动态成员,那么浅拷贝就会出问题了,让我们考虑如下一段代码:
- class Rect
- {
- public:
- Rect()
- {
- p = new int(100);
- }
- ~Rect()
- {
- if(p != NULL)
- {
- delete p;
- }
- }
- private:
- int width;
- int height;
- int *p;
- };
-
- int main()
- {
- Rect rect1;
- Rect rect2(rect1);
- return 0;
- }
在这段代码运行结束之前,会出现一个运行错误。原因就在于在进行对象复制时,对于动态分配的内容没有进行正确的操作。我们来分析一下:
在运行定义rect1对象后,由于在构造函数中有一个动态分配的语句,因此执行后的内存情况大致如下:

在使用rect1复制rect2时,由于执行的是浅拷贝,只是将成员的值进行赋值,这时 rect1.p= rect2.p,也即这两个指针指向了堆里的同一个空间,如下图所示:

当然,这不是我们所期望的结果,在销毁对象时,两个对象的析构函数将对同一个内存空间释放两次,这就是错误出现的原因。我们需要的不是两个p有相同的值,而是两个p指向的空间有相同的值,解决办法就是使用“深拷贝”。
3. 深拷贝
在“深拷贝”的情况下,对于对象中动态成员,就不能仅仅简单地赋值了,而应该重新动态分配空间,如上面的例子就应该按照如下的方式进行处理:
- class Rect
- {
- public:
- Rect()
- {
- p = new int(100);
- }
- Rect(const Rect& r)
- {
- width = r.width;
- height = r.height;
- p = new int;
- *p = *(r.p);
- }
- ~Rect()
- {
- if(p != NULL)
- {
- delete p;
- }
- }
- private:
- int width;
- int height;
- int *p;
- };
此时,在完成对象的复制后,内存的一个大致情况如下:

此时rect1的p和rect2的p各自指向一段内存空间,但它们指向的空间具有相同的内容,这就是所谓的“深拷贝”。
3. 防止默认拷贝发生
通过对对象复制的分析,我们发现对象的复制大多在进行“值传递”时发生,这里有一个小技巧可以防止按值传递——声明一个私有拷贝构造函数。甚至不必去定义这个拷贝构造函数,这样因为拷贝构造函数是私有的,如果用户试图按值传递或函数返回该类对象,将得到一个编译错误,从而可以避免按值传递或返回对象。
-
- class CExample
- {
- private:
- int a;
-
- public:
-
- CExample(int b)
- {
- a = b;
- cout<<"creat: "<<a<<endl;
- }
-
- private:
-
- CExample(const CExample& C);
-
- public:
- ~CExample()
- {
- cout<< "delete: "<<a<<endl;
- }
-
- void Show ()
- {
- cout<<a<<endl;
- }
- };
-
-
- void g_Fun(CExample C)
- {
- cout<<"test"<<endl;
- }
-
- int main()
- {
- CExample test(1);
-
-
- return 0;
- }
四. 拷贝构造函数的几个细节
1. 拷贝构造函数里能调用private成员变量吗?
解答:这个问题是在网上见的,当时一下子有点晕。其时从名子我们就知道拷贝构造函数其时就是一个特殊的构造函数,操作的还是自己类的成员变量,所以不受private的限制。
2. 以下函数哪个是拷贝构造函数,为什么?
- X::X(const X&);
- X::X(X);
- X::X(X&, int a=1);
- X::X(X&, int a=1, int b=2);
解答:对于一个类X, 如果一个构造函数的第一个参数是下列之一:
a) X&
b) const X&
c) volatile X&
d) const volatile X&
且没有其他参数或其他参数都有默认值,那么这个函数是拷贝构造函数.
- X::X(const X&);
- X::X(X&, int=1);
- X::X(X&, int a=1, int b=2);
3. 一个类中可以存在多于一个的拷贝构造函数吗?
解答:类中可以存在超过一个拷贝构造函数。
- class X {
- public:
- X(const X&);
- X(X&);
- };
注意,如果一个类中只存在一个参数为 X& 的拷贝构造函数,那么就不能使用const X或volatile X的
对象实行拷贝初始化.
- class X {
- public:
- X();
- X(X&);
- };
-
- const X cx;
- X x = cx;
如果一个类中没有定义拷贝构造函数,那么编译器会自动产生一个默认的拷贝构造函数。
这个默认的参数可能为 X::X(const X&)或 X::X(X&),由编译器根据上下文决定选择哪一个。
关于C++中的构造函数,拷贝构造函数和赋值运算,以前看过一篇《高质量C++/C编程指南》的文章中介绍的很清楚,网上能搜索到,如果想详细了解这方面的知识可以参看一下这篇文章。
常见的给对象赋值方式有构造函数,拷贝构造函数,赋值运算符这三种方法,如下代码演示了这几种常见的方法。
A a1;
A a2(a1);
A a3 = a1;
a3 = a2;
如果不手动写代码,C++编译器默认提供了构造函数,拷贝构造函数,赋值运算符的这三种方法的默认实现。
默认构造函数没有参数,它什么也不做,程序员如果要实现手动构造的话则需要编写相应的重载版本。前面代码的第一行就是通过默认构造函数来创建一个对象,一般也不会和其它几种构造方式混淆,和C#,Java等其它语言也是一样的,还比较容易掌握。
而拷贝构造函数和赋值运算符则是C++独有的,也是很多人所不熟悉的地方。构造函数和拷贝构造函数用于从一个对象复制出另一个对象。系统提供的默认拷贝构造函数和赋值运算的工作方式是内存拷贝,也就是浅拷贝。如果对象中用到了需要手动释放的对象,则会出现问题,这时就要手动重载这两个函数,实现深拷贝。
拷贝构造函数和赋值运算的重载声明如下:
A (const A& other)
A& operator = (const A& other)
要实现这两个函数,我们必须知道这几个基本信息
-
什么时候会调用
-
输入参数代表什么
-
函数体应该如何实现
-
返回值代表什么
1. 什么时候会调用
首先我们来看这两个函数什么时候会调用,对于上面代码的2-4行。
-
第二行:
A a2(a1);
这个很明显调用的是拷贝构造函数
-
第四行:
a3 = a2
这个很明显调用的是赋值运算
-
第三行:
A a3 = a1;
这个就没其它几个那么好懂了,看起来即像是调用拷贝构造函数创建一个对象,又像是调用赋值运算复制一个对象,还是两个都调了? 实际上,这个调用的是拷贝构造函数,和第二行的方式是等价的。
对于第三行的 A a3 = a1; 这种方式,我们如何去理解它呢?实际上有一个很好记的统一的大原则:从无到有是调用构造函数,从有到有调用的是赋值运算。基于这个原则,前面四行代码哪个是调用哪个函数就很好区分了。
2. 输入参数代表什么
拷贝构造函数和赋值运算函数都一个入参,这个入参很明显是待复制的数据源对象,简单讲就是括号里面的,= 号右边的。
从拷贝构造函数和赋值运算函数的声名形式来看,它是一个const型的,说明复制的过程中不应该修改源对象。当然,如果定义为const型的也能编过去,就是用起来没那么好用罢了(可以参看后面的effective C++ 条款15链接)。
3. 函数体应该如何实现
拷贝构造函数和赋值运算的功能一样,都是根据已有的对象复制出新对象。它们拥有同样的入参,实现的功能也应该是一样的。
按照c++的设计原则,重载了一个就应该重载另一个,并且有相同的实现,否则这种不一致性很容易导致程序出问题。
至于复制过程如何实现,关于如何实现对象深拷贝的网上有许多文章详细的讲解了这一过程,这个也是c程序员的基本技能。由于篇幅所限这里就不多介绍了。我的一般方法就是:先实现位拷贝,然后在对动态申请对象编码实现深拷贝。
4. 返回值代表什么
拷贝构造函数没有返回值,这个很好理解。但赋值运算有一个返回值就不那么容易理解了,数据复制操作时在函数运算体内就已经完成了,还要一个返回值干嘛,返回到外面有什么用?
最初我也认为这个函数返回值设计为void型更容易理解,后来才知道返回值主要是为了实现类似w = x = y = z = 0的连等,不过连等这个编程习惯本身就不大好。
最后再看看应该如何返回,其实直接返回个return *this; 就可以了,至于为什么不用其它的方式,还是看看权威的解释吧(链接失效的话直接google搜索标题):effective C++ 条款15: 让operator=返回*this的引用。
不久前,在博客上发表了一篇文章——
提高程序运行效率的10个简单方法,对于其中最后一点,多使用直接初始化,有很多读者向我提出了疑问,并写了一些测试程序,来说明直接初始化与复制初始化是同一件事。让我了解到大家对于直接初始化与复制初始化的区别的确是不太清楚,无可否认,那篇文章的例子用得的确不太好,在这里表示歉意!所以我觉得还是有必要跟大家详细分享一下我对直接初始化和复制初始化的理解。
一、Primer中的说法
首先我们来看看经典是怎么说的:
“当用于类类型对象时,初始化的复制形式和直接形式有所不同:直接初始化直接调用与实参匹配的构造函数,复制初始化总是调用复制构造函数。复制初始化首先使用指定构造函数创建一个临时对象,然后用复制构造函数将那个临时对象复制到正在创建的对象”
还有一段这样说,
“通常直接初始化和复制初始化仅在低级别优化上存在差异,然而,对于不支持复制的类型,或者使用非explicit构造函数的时候,它们有本质区别:
ifstream file1("filename")://ok:direct initialization
ifstream file2 = "filename";//error:copy constructor is private
”
二、通常的误解
从上面的说法中,我们可以知道,直接初始化不一定要调用复制构造函数,而复制初始化一定要调用复制构造函数。然而大多数人却认为,直接初始化是构造对象时要调用复制构造函数,而复制初始化是构造对象时要调用赋值操作函数(operator=),其实这是一大误解。因为只有对象被创建才会出现初始化,而赋值操作并不应用于对象的创建过程中,且primer也没有这样的说法。至于为什么会出现这个误解,可能是因为复制初始化的写法中存在等号(=)吧。
为了把问题说清楚,还是从代码上来解释比较容易让人明白,请看下面的代码:
- #include <iostream>
- #include <cstring>
- using namespace std;
-
- class ClassTest
- {
- public:
- ClassTest()
- {
- c[0] = '\0';
- cout<<"ClassTest()"<<endl;
- }
- ClassTest& operator=(const ClassTest &ct)
- {
- strcpy(c, ct.c);
- cout<<"ClassTest& operator=(const ClassTest &ct)"<<endl;
- return *this;
- }
- ClassTest(const char *pc)
- {
- strcpy(c, pc);
- cout<<"ClassTest (const char *pc)"<<endl;
- }
-
- ClassTest(const ClassTest& ct)
- {
- strcpy(c, ct.c);
- cout<<"ClassTest(const ClassTest& ct)"<<endl;
- }
- private:
- char c[256];
- };
-
- int main()
- {
- cout<<"ct1: ";
- ClassTest ct1("ab");
- cout<<"ct2: ";
- ClassTest ct2 = "ab";
- cout<<"ct3: ";
- ClassTest ct3 = ct1;
- cout<<"ct4: ";
- ClassTest ct4(ct1);
- cout<<"ct5: ";
- ClassTest ct5 = ClassTest();
- return 0;
- }
输出结果为:
从输出的结果,我们可以知道对象的构造到底调用了哪些函数,从ct1与ct2、ct3与ct4的比较中可以看出,ct1与ct2对象的构建调用的都是同一个函数——ClassTest(const char *pc),同样道理,ct3与ct4调用的也是同一个函数——ClassTest(const ClassTest& ct),而ct5则直接调用了默认构造函数。
于是,很多人就认为ClassTest ct1("ab");等价于ClassTest ct2 = "ab";,而ClassTest ct3 = ct1;也等价于ClassTest ct4(ct1);而且他们都没有调用赋值操作函数,所以它们都是直接初始化,然而事实是否真的如你所想的那样呢?答案显然不是。
三、层层推进,到底谁欺骗了我们
很多时候,自己的眼睛往往会欺骗你自己,这里就是一个例子,正是你的眼睛欺骗了你。为什么会这样?其中的原因在谈优化时的补充中也有说明,就是因为编译会帮你做很多你看不到,你也不知道的优化,你看到的结果,正是编译器做了优化后的代码的运行结果,并不是你的代码的真正运行结果。
你也许不相信我所说的,那么你可以把类中的复制函数函数中面注释起来的那行取消注释,让复制构造函数成为私有函数再编译运行这个程序,看看有什么结果发生。
很明显,发生了编译错误,从上面的运行结果,你可能会认为是因为ct3和ct4在构建过程中用到了复制构造函数——ClassTest(const ClassTest& ct),而现在它变成了私有函数,不能在类的外面使用,所以出现了编译错误,但是你也可以把ct3和ct4的函数语句注释起来,如下所示:
- int main()
- {
- cout<<"ct1: ";
- ClassTest ct1("ab");
- cout<<"ct2: ";
- ClassTest ct2 = "ab";
-
-
-
-
- cout<<"ct5: ";
- ClassTest ct5 = ClassTest();
- return 0;
- }
然而你还是非常遗憾地发现,还是没有编译通过。这是为什么呢?从上面的语句和之前的运行结果来看,的确是已经没有调用复制构造函数了,为什么还是编译错误呢?
经过实验,main函数只有这样才能通过编译:
- int main()
- {
- cout<<"ct1: ";
- ClassTest ct1("ab");
- return 0;
- }
在这里我们可以看到,原来是复制构造函数欺骗了我们。
四、揭开真相
看到这里,你可能已经大惊失色,下面就让我来揭开这个真相吧!
还是那一句,什么是直接初始化,而什么又是复制初始化呢?
简单点来说,就是定义对象时的写法不一样,一个用括号,如ClassTest ct1("ab"),而一个用等号,如ClassTest ct2 = "ab"。
但是从本质来说,它们却有本质的不同:直接初始化直接调用与实参匹配的构造函数,复制初始化总是调用复制构造函数。复制初始化首先使用指定构造函数创建一个临时对象,然后用复制构造函数将那个临时对象复制到正在创建的对象。所以当复制构造函数被声明为私有时,所有的复制初始化都不能使用。
现在我们再来看回main函数中的语句,
1、ClassTest ct1("ab");这条语句属于直接初始化,它不需要调用复制构造函数,直接调用构造函数ClassTest(const char *pc),所以当复制构造函数变为私有时,它还是能直接执行的。
2、ClassTest ct2 = "ab";这条语句为复制初始化,它首先调用构造函数ClassTest(const char *pc)函数创建一个临时对象,然后调用复制构造函数,把这个临时对象作为参数,构造对象ct2;所以当复制构造函数变为私有时,该语句不能编译通过。
3、ClassTest ct3 = ct1;这条语句为复制初始化,因为ct1本来已经存在,所以不需要调用相关的构造函数,而直接调用复制构造函数,把它值复制给对象ct3;所以当复制构造函数变为私有时,该语句不能编译通过。
4、ClassTest ct4(ct1);这条语句为直接初始化,因为ct1本来已经存在,直接调用复制构造函数,生成对象ct3的副本对象ct4。所以当复制构造函数变为私有时,该语句不能编译通过。
注:第4个对象ct4与第3个对象ct3的创建所调用的函数是一样的,但是本人却认为,调用复制函数的原因却有所不同。因为直接初始化是根据参数来调用构造函数的,如ClassTest ct4(ct1),它是根据括号中的参数(一个本类的对象),来直接确定为调用复制构造函数ClassTest(const ClassTest& ct),这跟函数重载时,会根据函数调用时的参数来调用相应的函数是一个道理;而对于ct3则不同,它的调用并不是像ct4时那样,是根据参数来确定要调用复制构造函数的,它只是因为初始化必然要调用复制构造函数而已。它理应要创建一个临时对象,但只是这个对象却已经存在,所以就省去了这一步,然后直接调用复制构造函数,因为复制初始化必然要调用复制构造函数,所以ct3的创建仍是复制初始化。
5、ClassTest ct5 = ClassTest();这条语句为复制初始化,首先调用默认构造函数产生一个临时对象,然后调用复制构造函数,把这个临时对象作为参数,构造对象ct5。所以当复制构造函数变为私有时,该语句不能编译通过。
五、假象产生的原因
产生上面的运行结果的主要原因在于编译器的优化,而为什么把复制构造函数声明为私有(private)就能把这个假象去掉呢?主要是因为复制构造函数是可以由编译默认合成的,而且是公有的(public),编译器就是根据这个特性来对代码进行优化的。然而如里你自己定义这个复制构造函数,编译则不会自动生成,虽然编译不会自动生成,但是如果你自己定义的复制构造函数仍是公有的话,编译还是会为你做同样的优化。然而当它是私有成员时,编译器就会有很不同的举动,因为你明确地告诉了编译器,你明确地拒绝了对象之间的复制操作,所以它也就不会帮你做之前所做的优化,你的代码的本来面目就出来了。
举个例子来说,就像下面的语句:
ClassTest ct2 = "ab";
它本来是要这样来构造对象的:首先调用构造函数ClassTest(const char *pc)函数创建一个临时对象,然后调用复制构造函数,把这个临时对象作为参数,构造对象ct2。然而编译也发现,复制构造函数是公有的,即你明确地告诉了编译器,你允许对象之间的复制,而且此时它发现可以通过直接调用重载的构造函数ClassTest(const char *pc)来直接初始化对象,而达到相同的效果,所以就把这条语句优化为ClassTest ct2("ab")。
而如果把复制构造函数声明为私有的,则对象之前的复制不能进行,即不能把临时对像作为参数,调用复制构造函数,所以编译就认为ClassTest ct2 = "ab"与ClassTest ct2("ab")是不等价的,也就不会帮你做这个优化,所以编译出错了。
注:根据上面的代码,有些人可能会运行出与本人测试不一样的结果,这是为什么呢?就像前面所说的那样,编译器会为代码做一定的优化,但是不同的编译器所作的优化的方案却可能有所不同,所以当你使用不同的编译器时,由于这些优化的方案不一样,可能会产生不同的结果,我这里用的是g++4.7。
http://blog.youkuaiyun.com/ljianhui/article/details/9245661#reply
http://www.cnblogs.com/TianFang/archive/2012/10/27/2742121.html
http://blog.youkuaiyun.com/lwbeyond/article/details/6202256
是原创并且有转载声明的,假如不同意,希望作者联系我。