A Tour of Machine Learning Algorithms

本文介绍了机器学习算法的不同分类方式,包括按学习风格分为有监督学习、无监督学习和半监督学习;按相似性分为回归算法、实例算法等。此外还列举了大量具体的算法示例,如逻辑回归、k-均值聚类等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Algorithms Grouped by Learning Style

  • Supervised Learning
    • Example problems are classification and regression.
    • Example algorithms include Logistic Regression and the Back Propagation Neural Network.
  • Unsupervised Learning
    • Example problems are clustering, dimensionality reduction and association rule learning.
    • Example algorithms include: the Apriori algorithm and k-Means.
  • Semi-Supervised Learning
    • Example problems are classification and regression.
    • Example algorithms are extensions to other flexible methods that make assumptions about how to model the unlabelled data.

Algorithms Grouped By Similarity

  • Regression Algorithms
    • Ordinary Least Squares Regression (OLSR)
    • Linear Regression
    • Logistic Regression
    • Stepwise Regression
    • Multivariate Adaptive Regression Splines (MARS)
    • Locally Estimated Scatterplot Smoothing (LOESS)
  • Instance-based Algorithms
    • k-Nearest Neighbour (kNN)
    • Learning Vector Quantization (LVQ)
    • Self-Organizing Map (SOM)
    • Locally Weighted Learning (LWL)
  • Regularization Algorithms
    • Ridge Regression
    • Least Absolute Shrinkage and Selection Operator (LASSO)
    • Elastic Net
    • Least-Angle Regression (LARS)
  • Decision Tree Algorithms
    • Classification and Regression Tree (CART)
    • Iterative Dichotomiser 3 (ID3)
    • C4.5 and C5.0 (different versions of a powerful approach)
    • Chi-squared Automatic Interaction Detection (CHAID)
    • Decision Stump
    • M5
    • Conditional Decision Trees
  • Bayesian Algorithms
    • Naive Bayes
    • Gaussian Naive Bayes
    • Multinomial Naive Bayes
    • Averaged One-Dependence Estimators (AODE)
    • Bayesian Belief Network (BBN)
    • Bayesian Network (BN)
  • Clustering Algorithms
    • k-Means
    • k-Medians
    • Expectation Maximisation (EM)
    • Hierarchical Clustering
  • Association Rule Learning Algorithms
    • Apriori algorithm
    • Eclat algorithm
  • Artificial Neural Network Algorithms
    • Perceptron
    • Back-Propagation
    • Hopfield Network
    • Radial Basis Function Network (RBFN)
  • Deep Learning Algorithms
    • Deep Boltzmann Machine (DBM)
    • Deep Belief Networks (DBN)
    • Convolutional Neural Network (CNN)
    • Stacked Auto-Encoders
  • Dimensionality Reduction Algorithms
    • Principal Component Analysis (PCA)
    • Principal Component Regression (PCR)
    • Partial Least Squares Regression (PLSR)
    • Sammon Mapping
    • Multidimensional Scaling (MDS)
    • Projection Pursuit
    • Linear Discriminant Analysis (LDA)
    • Mixture Discriminant Analysis (MDA)
    • Quadratic Discriminant Analysis (QDA)
    • Flexible Discriminant Analysis (FDA)
  • Ensemble Algorithms
    • Boosting
    • Bootstrapped Aggregation (Bagging)
    • AdaBoost
    • Stacked Generalization (blending)
    • Gradient Boosting Machines (GBM)
    • Gradient Boosted Regression Trees (GBRT)
    • Random Forest
  • Other Algorithms
    • Feature selection algorithms
    • Algorithm accuracy evaluation
    • Performance measures
    • Computational intelligence (evolutionary algorithms, etc.)
    • Computer Vision (CV)
    • Natural Language Processing (NLP)
    • Recommender Systems
    • Reinforcement Learning
    • Graphical Models
    • And more…
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值