【推荐】Dubbo架构与底层实现

本文深入剖析了Dubbo微服务框架的设计理念,包括其系统角色、架构分层、底层实现及服务暴露与消费的详细流程。介绍了Dubbo支持的多种协议,重点讲解了Dubbo协议和RMI协议下服务暴露的实现方式。

一、Dubbo的设计角色

640?wx_fmt=png

1)系统角色

(2)调用关系

 二、Dubbo是如何架构的

Dubbo的总体架构如图所示:

640?wx_fmt=png

框架分层架构中,各个层次的设计要点:

服务接口层(Service):该层是与实际业务逻辑相关的,根据服务提供方和服务消费方的业务设计对应的接口和实现。


三、Dubbo的底层实现

(1)协议支持

Dubbo支持多种协议,如下所示:在通信过程中,不同的服务等级一般对应着不同的服务质量,那么选择合适的协议便是一件非常重要的事情。你可以根据你应用的创建来选择。例如,使用RMI协议,一般会受到防火墙的限制,所以对于外部与内部进行通信的场景,就不要使用RMI协议,而是基于HTTP协议或者Hessian协议。

(2)默认使用Dubbo协议

连接个数:单连接

(3)Dubbo源码模块图

Dubbo以包结构来组织各个模块,各个模块及其关系,如图所示:

640?wx_fmt=png

以通过Dubbo的代码(使用Maven管理)组织,与上面的模块进行比较。简单说明各个包的情况:

四、服务暴露和消费的详细过程

(1)服务提供者暴露一个服务的详细过程

服务提供者暴露服务的主过程:

640?wx_fmt=jpeg

首先ServiceConfig类拿到对外提供服务的实际类ref(如:HelloWorldImpl),然后通过ProxyFactory类的getInvoker方法使用ref生成一个AbstractProxyInvoker实例,

到这一步就完成具体服务到Invoker的转化。接下来就是Invoker转换到Exporter的过程。

Dubbo处理服务暴露的关键就在Invoker转换到Exporter的过程(如上图中的红色部分),下面我们以Dubbo和RMI这两种典型协议的实现来进行说明:

Dubbo的实现

Dubbo协议的Invoker转为Exporter发生在DubboProtocol类的export方法,它主要是打开socket侦听服务,并接收客户端发来的各种请求,通讯细节由Dubbo自己实现。

RMI的实现

RMI协议的Invoker转为Exporter发生在RmiProtocol类的export方法,

(2)服务消费者消费一个服务的详细过程

服务消费的主过程:

640?wx_fmt=jpeg

首先ReferenceConfig类的init方法调用Protocol的refer方法生成Invoker实例(如上图中的红色部分),这是服务消费的关键。

接下来把Invoker转换为客户端需要的接口(如:HelloWorld)。

出处:https://blog.youkuaiyun.com/sduliding/article/details/79386887

内容概要:本文介绍了一种基于蒙特卡洛模拟拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计仿真;②学习蒙特卡洛模拟拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
内容概要:本文围绕面向制造业的鲁棒机器学习集成计算流程展开研究,提出了一套基于Python实现的综合性计算框架,旨在应对制造过程中数据不确定性、噪声干扰面向制造业的鲁棒机器学习集成计算流程研究(Python代码实现)及模型泛化能力不足等问题。该流程集成了数据预处理、特征工程、异常检测、模型训练优化、鲁棒性增强及结果可视化等关键环节,结合集成学习方法提升预测精度稳定性,适用于质量控制、设备故障预警、工艺参数优化等典型制造场景。文中通过实际案例验证了所提方法在提升模型鲁棒性预测性能方面的有效性。; 适合人群:具备Python编程基础机器学习基础知识,从事智能制造、工业数据分析及相关领域研究的研发人员工程技术人员,尤其适合工作1-3年希望将机器学习应用于实际制造系统的开发者。; 使用场景及目标:①在制造环境中构建抗干扰能力强、稳定性高的预测模型;②实现对生产过程中的关键指标(如产品质量、设备状态)进行精准监控预测;③提升传统制造系统向智能化转型过程中的数据驱动决策能力。; 阅读建议:建议读者结合文中提供的Python代码实例,逐步复现整个计算流程,并针对自身业务场景进行数据适配模型调优,重点关注鲁棒性设计集成策略的应用,以充分发挥该框架在复杂工业环境下的优势。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值