PWM

1. Pulse Wavelength Modulation -- 脉波调制


2. Pulse Width Modulation -- 脉宽调制 /脉冲宽度调制
脉冲宽度调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。脉宽调制是开关型稳压电源中的术语。这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。脉宽调制式开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。

PWM一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶 体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。


PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。

多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。

许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:

* 设置提供调制方波的片上定时器/计数器的周期
* 在PWM控制寄存器中设置接通时间
* 设置PWM输出的方向,这个输出是一个通用I/O管脚
* 启动定时器
* 使能PWM控制器

PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。

对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。

总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。
/* * Copyright (c) 2018 Actions Semiconductor Co., Ltd * * SPDX-License-Identifier: Apache-2.0 */ /** * @brief PWM controller driver for Actions SoC */ #include <errno.h> #include <sys/__assert.h> #include <stdbool.h> #include <kernel.h> #include <device.h> #include <init.h> #include <drivers/pwm.h> #include <soc.h> #include <drivers/dma.h> #include <errno.h> #include <soc_regs.h> #include "pwm_context.h" #include <drivers/cfg_drv/dev_config.h> #include <soc.h> #define LOG_LEVEL CONFIG_LOG_PWM_DEV_LEVEL #include <logging/log.h> LOG_MODULE_REGISTER(pwm); #define DMA_IRQ_TC (0) /* DMA completion flag */ #define DMA_IRQ_HF (1) /* DMA half-full flag */ enum PWM_GROUP { PWM_GROUP0_REG, PWM_GROUP1_REG, PWM_GROUP2_REG, PWM_GROUP3_REG, PWM_GROUP4_REG, PWM_GROUP5_REG, PWM_GROUP_MAX, }; #define PWM_FIFO_REG (6) #define PWM_IR_REG (7) #define PWM_INTCTL_REG (8) #define PWM_PENDING_REG (9) enum PWM_MODE { PWM_DEFAULT_REG, PWM_FIX_INIT, PWM_BTH_INIT, PWM_PRG_INIT, PWM_IR_INIT, PWM_MODE_MAX, }; #define PWM_MODE_MASK (0x7) #define PWM_chan(x) (1 << (3 + x)) #define PWM_chan_act(x) (1 << (9 + x)) #define PWM_chan_act_MASK (0x7e00) #define ir_code_pre_sym(a) ((a&0x8000) >> 15) #define ir_code_pre_val(a) ((a&0x7f00) >> 8) #define ir_code_pos_sym(a) ((a&0x80) >> 7) #define ir_code_pos_val(a) ((a&0x7f) >> 0) #define PWM_IR_REPEAT_MODE (0 << 8) #define PWM_IR_CYCLE_MODE (1 << 8) #define PWM_IR_MASK (0xff) #define PWM_IR_TX_MARGIN (1000) #define PWM_IR_TIMEOUT (1) /* IR_RX_ANA_CTL */ #define TX_ANA_EN (1) #define RX_ANA_CTL(base) (base + 0xf0) #define TX_ANA_CTL(base) (base + 0xf4) #define IR_TX_DINV (1 << 8) #define IR_TX_SR(X) (X << 4) #define IR_TX_POUT(X) (X << 1) #define IR_TX_EN (1) struct pwm_acts_data { struct k_sem dma_sync; struct k_sem ir_sync; struct k_sem ir_transfer_sync; struct device *dma_dev; int dma_chan; int (*program_callback)(void *cb_data, u8_t reason); void *cb_data; u8_t program_pin; u16_t group_init_status[6]; u32_t pwm_ir_sw; u32_t buf_num; u32_t pwm_ir_mode; struct k_timer timer; u32_t ir_event_timeout; u32_t pwm_ir_lc[2]; u32_t pwm_ir_ll[2]; u32_t pwm_ir_ld[2]; u32_t pwm_ir_pl[2]; u32_t pwm_ir_pd0[2]; u32_t pwm_ir_pd1[2]; u32_t pwm_ir_sl[2]; u8_t ir_pout; bool manual_stop_flag; }; struct pwm_acts_config { u32_t base; u32_t pwmclk_reg; u32_t cycle; u8_t clock_id; u8_t reset_id; const struct acts_pin_config *pinmux; u8_t pinmux_size; void (*irq_config_func)(void); const char *dma_dev_name; u8_t txdma_id; u8_t flag_use_dma; }; void pwm_acts_repeat_event_process(const struct pwm_acts_config *cfg, u32_t pending) { uint32_t pwm_base; if(pending & PWM_PENDING_G0REPEAT) { sys_write32(~(PWM_PENDING_G0REPEAT) & sys_read32(PWM_INT_CTL(cfg->base)), PWM_INT_CTL(cfg->base)); pwm_base = PWM0_BASE(cfg->base); struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)pwm_base; pwm->ctrl = pwm->ctrl & ~(PWMx_CTRL_CHx_MODE_SEL(0,0xfff)); } if(pending & PWM_PENDING_G1REPEAT) { sys_write32(~(PWM_PENDING_G1REPEAT) & sys_read32(PWM_INT_CTL(cfg->base)), PWM_INT_CTL(cfg->base)); pwm_base = PWM1_BASE(cfg->base); struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)pwm_base; pwm->ctrl = pwm->ctrl & ~(PWMx_CTRL_CHx_MODE_SEL(0,0xfff)); } if(pending & PWM_PENDING_G2REPEAT) { sys_write32(~(PWM_PENDING_G2REPEAT) & sys_read32(PWM_INT_CTL(cfg->base)), PWM_INT_CTL(cfg->base)); pwm_base = PWM2_BASE(cfg->base); struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)pwm_base; pwm->ctrl = pwm->ctrl & ~(PWMx_CTRL_CHx_MODE_SEL(0,0x3)); } if(pending & PWM_PENDING_G3REPEAT) { sys_write32(~(PWM_PENDING_G3REPEAT) & sys_read32(PWM_INT_CTL(cfg->base)), PWM_INT_CTL(cfg->base)); pwm_base = PWM3_BASE(cfg->base); struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)pwm_base; pwm->ctrl = pwm->ctrl & ~(PWMx_CTRL_CHx_MODE_SEL(0,0x3)); } if(pending & PWM_PENDING_G4REPEAT) { sys_write32(~(PWM_PENDING_G4REPEAT) & sys_read32(PWM_INT_CTL(cfg->base)), PWM_INT_CTL(cfg->base)); pwm_base = PWM4_BASE(cfg->base); struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)pwm_base; pwm->ctrl = pwm->ctrl & ~(PWMx_CTRL_CHx_MODE_SEL(0,0x3)); } } static void pwm_acts_ir_timeout_event(struct k_timer *timer) { struct pwm_acts_data *data = k_timer_user_data_get(timer); struct acts_pwm_ir *pwm_ir = (struct acts_pwm_ir *)PWM_IR(PWM_REG_BASE); pwm_ir->ir_ll = data->pwm_ir_ll[data->pwm_ir_sw]; pwm_ir->ir_ld = data->pwm_ir_ld[data->pwm_ir_sw]; pwm_ir->ir_pd0 = data->pwm_ir_pd0[data->pwm_ir_sw]; pwm_ir->ir_pd1 = data->pwm_ir_pd1[data->pwm_ir_sw]; pwm_ir->ir_sl = data->pwm_ir_sl[data->pwm_ir_sw]; pwm_ir->ir_pl = data->pwm_ir_pl[data->pwm_ir_sw]; pwm_ir->ir_lc = data->pwm_ir_lc[data->pwm_ir_sw]; pwm_ir->ir_ctl |= PWM_IRCTL_CU; if(data->pwm_ir_sw < data->buf_num) data->pwm_ir_sw++; if(data->pwm_ir_sw >= data->buf_num) { if(data->pwm_ir_mode & PWM_IR_CYCLE_MODE) data->pwm_ir_sw = 0; else data->pwm_ir_sw = data->buf_num -1; } k_timer_stop(&data->timer); } void pwm_acts_isr(void *arg) { struct device *dev = (struct device *)arg; struct pwm_acts_data *data = dev->data; const struct pwm_acts_config *cfg = dev->config; struct acts_pwm_ir *pwm_ir = (struct acts_pwm_ir *)PWM_IR(cfg->base); unsigned int key; key = irq_lock(); if((sys_read32(PWM_PENDING(cfg->base)) & PWM_PENDING_IRSS) && (data->buf_num > 1)) { pwm_ir->ir_ctl |= PWM_IRCTL_CU; u16_t timeout; timeout = (data->ir_event_timeout * pwm_ir->ir_ll)/1000 + PWM_IR_TIMEOUT; k_timer_start(&data->timer, K_MSEC(timeout), K_MSEC(timeout)); } irq_unlock(key); if(sys_read32(PWM_PENDING(cfg->base)) & PWM_PENDING_IRAE) { if (data->manual_stop_flag) { k_sem_give(&data->ir_sync); data->group_init_status[PWM_GROUP5_REG] = 0; } else { /* continue to send repeat code or data code */ pwm_ir->ir_ctl |= PWM_IRCTL_START; } } if(sys_read32(PWM_PENDING(cfg->base)) & (PWM_PENDING_REPEAT_MASK & sys_read32(PWM_INT_CTL(cfg->base)))) { pwm_acts_repeat_event_process(cfg, sys_read32(PWM_PENDING(cfg->base))); } sys_write32(0xffffffff, PWM_PENDING(cfg->base)); } static void pwm_acts_set_clk(const struct pwm_acts_config *cfg, uint32_t group, uint32_t freq_hz) { clk_set_rate(cfg->clock_id + group, freq_hz); k_busy_wait(100); } static u32_t pwm_acts_get_group(u32_t pwm) { u32_t group; if(pwm > 15) return -EINVAL; if((pwm) < 6) group = PWM_GROUP0_REG; else if((pwm) < 12) group = PWM_GROUP1_REG; else group = pwm -10; return group; } static u32_t pwm_acts_get_reg_base(u32_t base, uint32_t REG) { u32_t controller_reg; switch(REG) { case PWM_GROUP0_REG: controller_reg = PWM0_BASE(base); break; case PWM_GROUP1_REG: controller_reg = PWM1_BASE(base); break; case PWM_GROUP2_REG: controller_reg = PWM2_BASE(base); break; case PWM_GROUP3_REG: controller_reg = PWM3_BASE(base); break; case PWM_GROUP4_REG: controller_reg = PWM4_BASE(base); break; case PWM_GROUP5_REG: controller_reg = PWM5_BASE(base); break; case PWM_FIFO_REG: controller_reg = PWM_FIFO(base); break; case PWM_IR_REG: controller_reg = PWM_IR(base); break; case PWM_INTCTL_REG: controller_reg = PWM_INT_CTL(base); break; case PWM_PENDING_REG: controller_reg = PWM_PENDING(base); break; default: return -EINVAL; } return controller_reg; } /* * Set the period and pulse width for a PWM pin. * * Parameters * dev: Pointer to PWM device structure * pwm: PWM channel to set * period_cycles: Period (in timer count) * pulse_cycles: Pulse width (in timer count). * @param flags Flags for pin configuration (polarity). * return 0, or negative errno code */ static void pwm_acts_groupx_fix_init(u32_t base, u32_t period_cycles, u32_t pulse_cycles, u8_t chan, u8_t function, pwm_flags_t flags) { struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)base; u32_t pol_param; pwm->ctrl |= PWMx_CTRL_CHx_MODE_SEL(chan,1); if(chan < 4) { pol_param = PWMx_CH_CTL0_CHx_POL_SEL(chan); if(flags) pwm->ch_ctrl0 |= pol_param; else pwm->ch_ctrl0 = pwm->ch_ctrl0 & (~pol_param); } else { pol_param = PWMx_CH_CTL1_CHx_POL_SEL(chan); if(flags) pwm->ch_ctrl1 |= pol_param; else pwm->ch_ctrl1 = pwm->ch_ctrl1 & (~pol_param); } if(function) { pwm->cntmax = period_cycles; pwm->cmp[chan] = pulse_cycles; if((pwm->ctrl & PWMx_CTRL_HUA) == 0) pwm->ctrl |= PWMx_CTRL_HUA; else { k_usleep(30); pwm->ctrl |= PWMx_CTRL_HUA; } return; } pwm->cntmax = period_cycles; pwm->cmp[chan] = pulse_cycles; pwm->ctrl |= PWMx_CTRL_CNT_EN;//norlmal mode } static int pwm_acts_pin_set(const struct device *dev, uint32_t pwm, u32_t period_cycles, u32_t pulse_cycles, pwm_flags_t flags) { const struct pwm_acts_config *cfg = dev->config; struct pwm_acts_data *data = dev->data; uint32_t base,group; u16_t status; LOG_INF("PWM@%d set period cycles %d ms, pulse cycles %d ms", pwm, period_cycles, pulse_cycles); // period_cycles = period_cycles * pwm_normal_clk_rate / 1000; // pulse_cycles = pulse_cycles * pwm_normal_clk_rate / 1000; if (pulse_cycles > period_cycles) { LOG_ERR("pulse cycles %d is biger than period's %d", pulse_cycles, period_cycles); return -EINVAL; } group = pwm_acts_get_group(pwm); status = data->group_init_status[group]; if((status&PWM_MODE_MASK) != PWM_DEFAULT_REG && (status&PWM_MODE_MASK) != PWM_FIX_INIT) { LOG_ERR("start a fix mode but have not stop this group bfore!"); return -EINVAL; } pwm = (pwm > 5)?pwm-6:pwm; pwm = (pwm > 5)?pwm-4-group:pwm; base = pwm_acts_get_reg_base(cfg->base, group); if((status & PWM_chan(pwm)) == 0)//this group_chan have not initialized yet. pwm_acts_groupx_fix_init(base,period_cycles,pulse_cycles,pwm, 0, flags); else pwm_acts_groupx_fix_init(base,period_cycles,pulse_cycles,pwm, 1, flags); if(pulse_cycles == 0) { data->group_init_status[group] = data->group_init_status[group] & ~(PWM_chan_act(pwm)); } else { data->group_init_status[group] = PWM_FIX_INIT | PWM_chan(pwm) | status; data->group_init_status[group] |= PWM_chan_act(pwm); } return 0; } /* * Set the period and pulse width for a PWM pin. * * Parameters * dev: Pointer to PWM device structure * pwm: PWM channel to set * ctrl: breath mode control * return 0, or negative errno code */ #ifdef CONFIG_PWM_TAI_FULL_FUNC static void pwm_acts_groupx_breath_init(u32_t base, u8_t chan, pwm_breath_ctrl_t *ctrl) { struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)base; struct acts_pwm_breath_mode *breath = (struct acts_pwm_breath_mode *)(PWM_BREATH(base) + chan * PWM_BREATH_REG_SIZE); pwm->cntmax = ctrl->pwm_count_max; if(ctrl->stage_a_step) breath->pwm_bth_a = PWMx_BTHxy_EN | PWMx_BTHxy_XS(ctrl->stage_a_pwm) | PWMx_BTHxy_REPEAT(ctrl->stage_a_repeat) | PWMx_BTHxy_STEP(ctrl->stage_a_step); else breath->pwm_bth_a &= (~PWMx_BTHxy_EN); if(ctrl->stage_b_step) breath->pwm_bth_b = PWMx_BTHxy_EN | PWMx_BTHxy_XS(ctrl->stage_b_pwm) | PWMx_BTHxy_REPEAT(ctrl->stage_b_repeat) | PWMx_BTHxy_STEP(ctrl->stage_b_step); else breath->pwm_bth_b &= (~PWMx_BTHxy_EN); if(ctrl->stage_c_step) breath->pwm_bth_c = PWMx_BTHxy_EN | PWMx_BTHxy_XS(ctrl->stage_c_pwm) | PWMx_BTHxy_REPEAT(ctrl->stage_c_repeat) | PWMx_BTHxy_STEP(ctrl->stage_c_step); else breath->pwm_bth_c &= (~PWMx_BTHxy_EN); if(ctrl->stage_d_step) breath->pwm_bth_d = PWMx_BTHxy_EN | PWMx_BTHxy_XS(ctrl->stage_d_pwm) | PWMx_BTHxy_REPEAT(ctrl->stage_d_repeat) | PWMx_BTHxy_STEP(ctrl->stage_d_step); else breath->pwm_bth_d &= (~PWMx_BTHxy_EN); if(ctrl->stage_e_step) breath->pwm_bth_e = PWMx_BTHxy_EN | PWMx_BTHxy_XS(ctrl->stage_e_pwm) | PWMx_BTHxy_REPEAT(ctrl->stage_e_repeat) | PWMx_BTHxy_STEP(ctrl->stage_e_step); else breath->pwm_bth_e &= (~PWMx_BTHxy_EN); if(ctrl->stage_f_step) breath->pwm_bth_f = PWMx_BTHxy_EN | PWMx_BTHxy_XS(ctrl->stage_f_pwm) | PWMx_BTHxy_REPEAT(ctrl->stage_f_repeat) | PWMx_BTHxy_STEP(ctrl->stage_f_step); else breath->pwm_bth_f &= (~PWMx_BTHxy_EN); if(ctrl->stage_low_wait) breath->pwm_bth_hl = PWMx_BTHx_HL_L(ctrl->stage_low_wait) | PWMx_BTHx_HL_LEN; else breath->pwm_bth_hl &= (~PWMx_BTHx_HL_LEN); if(ctrl->stage_high_wait) breath->pwm_bth_hl = PWMx_BTHx_HL_H(ctrl->stage_high_wait) | PWMx_BTHx_HL_HEN; else breath->pwm_bth_hl &= (~PWMx_BTHx_HL_HEN); if(ctrl->start_dir) breath->pwm_bth_st = PWMx_BTHx_ST_ST(ctrl->start_pwm) | PWMx_BTHx_ST_DIR; else breath->pwm_bth_st = PWMx_BTHx_ST_ST(ctrl->start_pwm); pwm->ctrl |= PWMx_CTRL_CHx_MODE_SEL(chan,3) | PWMx_CTRL_CNT_EN;//breath mode } static int pwm_acts_set_breath_mode(const struct device *dev, uint32_t pwm, pwm_breath_ctrl_t *ctrl) { const struct pwm_acts_config *cfg = dev->config; struct pwm_acts_data *data = dev->data; uint32_t base,group; u16_t status; group = pwm_acts_get_group(pwm); status = data->group_init_status[group]; if((status&0x3) != PWM_BTH_INIT && (status&0x3)) {//not brearh mode or default LOG_ERR("start a breath mode but have not stop this group bfore!"); return -EINVAL; } pwm = (pwm > 5)?pwm-6:pwm; pwm = (pwm > 5)?pwm-4-group:pwm; base = pwm_acts_get_reg_base(cfg->base, group); if(group == PWM_GROUP1_REG || group == PWM_GROUP2_REG) pwm_acts_groupx_breath_init(base, pwm, ctrl); else { LOG_ERR("unsuported channel: %d",pwm); return -EINVAL; } data->group_init_status[group] = PWM_BTH_INIT | PWM_chan(pwm) | status; return 0; } #endif /* * Set the period and pulse width for a PWM pin. * * Parameters * dev: Pointer to PWM device structure * pwm: PWM channel to set * ctrl: program mode control * return 0, or negative errno code */ #ifdef CONFIG_PWM_TAI_FULL_FUNC static void dma_done_callback(const struct device *dev, void *callback_data, uint32_t ch , int type) { struct pwm_acts_data *data = (struct pwm_acts_data *)callback_data; //if (type != DMA_IRQ_TC) //return; LOG_DBG("pwm dma transfer is done"); k_sem_give(&data->dma_sync); } static int pwm_acts_start_dma(const struct pwm_acts_config *cfg, struct pwm_acts_data *data, uint32_t dma_chan, uint16_t *buf, int32_t len, bool is_tx, void *callback) { struct acts_pwm_fifo *pwm_fifo = (struct acts_pwm_fifo *)PWM_FIFO(cfg->base); struct dma_config dma_cfg = {0}; struct dma_block_config dma_block_cfg = {0}; if (callback) { dma_cfg.dma_callback = (dma_callback_t)callback; dma_cfg.user_data = data; dma_cfg.complete_callback_en = 1; } dma_cfg.block_count = 1; dma_cfg.head_block = &dma_block_cfg; dma_block_cfg.block_size = len; if (is_tx) { dma_cfg.dma_slot = cfg->txdma_id; dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; dma_block_cfg.source_address = (uint32_t)buf; dma_block_cfg.dest_address = (uint32_t)&pwm_fifo->fifodat; dma_cfg.dest_data_size = 2; } else { return -EINVAL; } dma_cfg.source_burst_length = 4; if (dma_config(data->dma_dev, dma_chan, &dma_cfg)) { LOG_ERR("dma%d config error", dma_chan); return -1; } if (dma_start(data->dma_dev, dma_chan)) { LOG_ERR("dma%d start error", dma_chan); return -1; } return 0; } static void pwm_acts_stop_dma(const struct pwm_acts_config *cfg, struct pwm_acts_data *data, uint32_t dma_chan) { dma_stop(data->dma_dev, dma_chan); } static int pwm_acts_wait_fifo_staus(struct acts_pwm_fifo *pwm_fifo, uint16_t timeout) { int start_time; start_time = k_uptime_get_32(); while(!(pwm_fifo->fifosta&PWM_FIFOSTA_EMPTY)) { if(k_uptime_get_32() - start_time > 500) return 0; } return -EINVAL; } static int pwm_acts_dma_transfer(const struct pwm_acts_config *cfg, struct pwm_acts_data *data, u8_t chan, pwm_program_ctrl_t *ctrl) { struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)cfg->base; struct acts_pwm_fifo *pwm_fifo = (struct acts_pwm_fifo *)PWM_FIFO(cfg->base); int ret; pwm->ctrl |= PWMx_CTRL_CHx_MODE_SEL(chan,2) | PWMx_CTRL_CM | PWMx_CTRL_RM; if(ctrl->cntmax) { pwm->ctrl = pwm->ctrl & ~(PWMx_CTRL_CM); pwm->cntmax = ctrl->cntmax; } if(ctrl->repeat) { pwm->ctrl = pwm->ctrl & ~(PWMx_CTRL_RM); pwm->repeat = ctrl->repeat; } if(pwm_acts_wait_fifo_staus(pwm_fifo, 500)) { LOG_ERR("time out error, pwm fifo can not be empty!"); return -EINVAL; } pwm_fifo->fifoctl = PWM_FIFOCTL_START; ret = pwm_acts_start_dma(cfg, data, data->dma_chan, ctrl->ram_buf, ctrl->ram_buf_len, 1, dma_done_callback); if (ret) { LOG_ERR("faield to start dma chan 0x%x\n", data->dma_chan); goto out; } pwm->ctrl |= PWMx_CTRL_CNT_EN; /* wait until dma transfer is done */ k_sem_take(&data->dma_sync, K_FOREVER);//K_MSEC(500));// out: pwm_acts_stop_dma(cfg, data, data->dma_chan); if(pwm_acts_wait_fifo_staus(pwm_fifo, 500)) { LOG_ERR("time out error, pwm fifo can not be empty!"); return -EINVAL; } pwm->ctrl = pwm->ctrl & ~(PWMx_CTRL_CHx_MODE_SEL(chan,2) | PWMx_CTRL_CM | PWMx_CTRL_RM | PWMx_CTRL_CNT_EN); pwm_fifo->fifoctl = pwm_fifo->fifoctl & ~(PWM_FIFOCTL_START); return ret; } static int pwm_acts_set_program_mode(const struct device *dev, uint32_t pwm, pwm_program_ctrl_t *ctrl) { const struct pwm_acts_config *cfg = dev->config; struct pwm_acts_data *data = dev->data; uint32_t base,group; u16_t status; group = pwm_acts_get_group(pwm); status = data->group_init_status[group]; if((status&0x3) != PWM_PRG_INIT && (status&0x3)) {//not program mode or default LOG_ERR("start a breath mode but have not stop this group bfore!"); return -EINVAL; } pwm = (pwm > 5)?pwm-6:pwm; pwm = (pwm > 5)?pwm-4-group:pwm; base = pwm_acts_get_reg_base(cfg->base, group); if(group == PWM_GROUP0_REG || group == PWM_GROUP1_REG || group == PWM_GROUP2_REG) { pwm_acts_dma_transfer(cfg, data, pwm, ctrl);//这里有问题的需要修改,ctrl无法覆盖到group2和group1 } else { LOG_ERR("unsuported channel: %d",pwm); return -EINVAL; } // data->group_init_status[group] = PWM_BTH_INIT | PWM_chan(pwm) | status; return 0; } #endif //#define TX_ANA_CTL(base) (base + 0xf4) //#define IR_TX_DINV (1 << 8) //#define IR_TX_SR(X) (X << 4) //#define IR_TX_POUT(X) (X << 1) //#define IR_TX_EN (1) #if 0 static void pwm_acts_ir_reg_dump(struct acts_pwm_ir *pwm_ir) { printk("pwm_ir->ir_asc :%d\n", pwm_ir->ir_asc ); printk("pwm_ir->ir_duty :%d\n", pwm_ir->ir_duty ); printk("pwm_ir->ir_lc :%d\n", pwm_ir->ir_lc ); printk("pwm_ir->ir_ld :%d\n", pwm_ir->ir_ld ); printk("pwm_ir->ir_ll :%d\n", pwm_ir->ir_ll ); printk("pwm_ir->ir_pd0 :%d\n", pwm_ir->ir_pd0 ); printk("pwm_ir->ir_pd1 :%d\n", pwm_ir->ir_pd1 ); printk("pwm_ir->ir_period :%d\n", pwm_ir->ir_period ); printk("pwm_ir->ir_pl :%d\n", pwm_ir->ir_pl ); printk("pwm_ir->ir_pl0_post :%d\n", pwm_ir->ir_pl0_post ); printk("pwm_ir->ir_pl0_pre :%d\n", pwm_ir->ir_pl0_pre ); printk("pwm_ir->ir_pl1_post :%d\n", pwm_ir->ir_pl1_post ); printk("pwm_ir->ir_pl1_pre :%d\n", pwm_ir->ir_pl1_pre ); printk("pwm_ir->ir_sl :%d\n", pwm_ir->ir_sl ); } #endif static void pwm_acts_ir_tx(const struct pwm_acts_config *cfg, struct pwm_acts_data *data, u8_t chan, struct pwm_ir_mode_param_t *ctrl, uint32_t base) { struct acts_pwm_groupx *pwm = (struct acts_pwm_groupx *)base; struct acts_pwm_ir *pwm_ir = (struct acts_pwm_ir *)PWM_IR(cfg->base); u16_t mode; acts_pinmux_set(cfg->pinmux[cfg->pinmux_size - 1].pin_num, cfg->pinmux[cfg->pinmux_size - 1].mode); #if TX_ANA_EN sys_write32(0, RX_ANA_CTL(GPIO_REG_BASE)); sys_write32(IR_TX_EN | IR_TX_POUT(data->ir_pout), TX_ANA_CTL(GPIO_REG_BASE)); #endif while(pwm_ir->ir_ctl&PWM_IRCTL_START); data->pwm_ir_mode = ctrl[0].mode; mode = ctrl[0].mode & PWM_IR_MASK; pwm->ctrl |= PWMx_CTRL_CHx_MODE_SEL(chan,2); pwm_ir->ir_asc = ctrl[0].ir_asc; pwm_ir->ir_duty = ctrl[0].ir_duty; pwm_ir->ir_lc = ctrl[0].ir_lc; pwm_ir->ir_ld = ctrl[0].ir_ld; pwm_ir->ir_ll = ctrl[0].ir_ll; pwm_ir->ir_pd0 = ctrl[0].ir_pd0; pwm_ir->ir_pd1 = ctrl[0].ir_pd1; pwm_ir->ir_period = ctrl[0].ir_period; pwm_ir->ir_pl = ctrl[0].ir_pl; pwm_ir->ir_pl0_post = ctrl[0].ir_pl0_post; pwm_ir->ir_pl0_pre = ctrl[0].ir_pl0_pre; pwm_ir->ir_pl1_post = ctrl[0].ir_pl1_post; pwm_ir->ir_pl1_pre = ctrl[0].ir_pl1_pre; pwm_ir->ir_sl = ctrl[0].ir_sl; // pwm_acts_ir_reg_dump(pwm_ir); if(ctrl[0].buf_num > 1) { data->pwm_ir_sw = 1; data->pwm_ir_lc[0] = ctrl[0].ir_lc; data->pwm_ir_ld[0] = ctrl[0].ir_ld; data->pwm_ir_ll[0] = ctrl[0].ir_ll; data->pwm_ir_pd0[0] = ctrl[0].ir_pd0; data->pwm_ir_pd1[0] = ctrl[0].ir_pd1; data->pwm_ir_pl[0] = ctrl[0].ir_pl; data->pwm_ir_sl[0] = ctrl[0].ir_sl; data->pwm_ir_lc[1] = ctrl[1].ir_lc; data->pwm_ir_ld[1] = ctrl[1].ir_ld; data->pwm_ir_ll[1] = ctrl[1].ir_ll; data->pwm_ir_pd0[1] = ctrl[1].ir_pd0; data->pwm_ir_pd1[1] = ctrl[1].ir_pd1; data->pwm_ir_pl[1] = ctrl[1].ir_pl; data->pwm_ir_sl[1] = ctrl[1].ir_sl; } data->manual_stop_flag = false; data->buf_num = ctrl[0].buf_num; sys_write32(0xffffffff, PWM_PENDING(cfg->base)); sys_write32(PWM_INTCTL_IRAE | PWM_INTCTL_IRSS, PWM_INT_CTL(cfg->base)); pwm_ir->ir_ctl = PWM_IRCTL_PLED | PWM_IRCTL_START; pwm->ctrl |= PWMx_CTRL_CNT_EN; } static u32_t pwm_acts_data_cal(u32_t data, u32_t buf_num) { u32_t cal_val = 0; u32_t cal_dat = data; while(buf_num > 0) { if(cal_dat & 0x1) cal_val++; buf_num--; cal_dat = cal_dat >> 1; } return cal_val; } static u32_t pwm_acts_ir_get_len(u32_t ld) { u32_t len = 0; for(int i = 0; i < 32; i++) { if(ld & 0x80000000) break; len++; ld = ld << 1; } len = 32 - len; return len; } static void pwm_acts_ir_param_sw(struct ir_tx_data_param *ctrl, struct pwm_ir_mode_param_t *param, u32_t loc, struct ir_tx_protocol_param *protocol_param) { u32_t val, sym, ld_len, protocol; u16_t cr_rate; protocol = ctrl->mode; if(ctrl->rate) cr_rate = ctrl->rate/100; else cr_rate = protocol_param->ir_cr_rate; param->ir_period = pwm_clk_rate/(cr_rate * 1000); if(ctrl->duty) param->ir_duty = param->ir_period *10/ctrl->duty; else param->ir_duty = param->ir_period/3; param->ir_lc = cr_rate * protocol_param->ir_lc_bit_length/1000; sym = ir_code_pre_sym(protocol_param->ir_0_code) << 16; val = ir_code_pre_val(protocol_param->ir_0_code) * protocol_param->code_bit_length; val = val * cr_rate/1000; if(sym) val = val + 1;//process remainder param->ir_pl0_pre = sym | val; sym = ir_code_pos_sym(protocol_param->ir_0_code) << 16; val = ir_code_pos_val(protocol_param->ir_0_code) * protocol_param->code_bit_length; val = val * cr_rate/1000; if(sym) val = val + 1;//process remainder param->ir_pl0_post = sym | val; sym = ir_code_pre_sym(protocol_param->ir_1_code) << 16; val = ir_code_pre_val(protocol_param->ir_1_code) * protocol_param->code_bit_length; val = val * cr_rate/1000; if(sym) val = val + 1;//process remainder param->ir_pl1_pre = sym | val; sym = ir_code_pos_sym(protocol_param->ir_1_code) << 16; val = ir_code_pos_val(protocol_param->ir_1_code) * protocol_param->code_bit_length; val = val * cr_rate/1000; if(sym) val = val + 1;//process remainder param->ir_pl1_post = sym | val; param->ir_ll = pwm_acts_ir_get_len(protocol_param->ir_lc_code); param->ir_ld = protocol_param->ir_lc_code;//01b if(protocol & PWM_IR_CYCLE_MODE) { ld_len = pwm_acts_ir_get_len(protocol_param->ir_trc_loc); param->ir_pl = (loc == 1)?(protocol_param->ir_dc_length - ld_len):(ld_len -1); param->ir_asc = protocol_param->ir_asc; param->ir_Tf = (loc == 1)? 0 : (protocol_param->ir_Tf_length + PWM_IR_TX_MARGIN) * 10; val = ir_code_pos_val(protocol_param->ir_0_code) * protocol_param->code_bit_length; val = val * cr_rate/1000; if(protocol_param->ir_stop_bit && loc != 1) param->ir_lc = param->ir_lc - val; } else { param->ir_pl = protocol_param->ir_dc_length; param->ir_asc = protocol_param->ir_asc; param->ir_Tf = (protocol_param->ir_Tf_length + PWM_IR_TX_MARGIN) * 10; } param->ir_stop_bit = protocol_param->ir_stop_bit; } static void pwm_acts_ir_param_cal(struct ir_tx_data_param *ctrl, struct pwm_ir_mode_param_t *result, struct ir_tx_protocol_param *protocol_param) { u32_t num_0, num_1, sum_cycle, ir_sl, pwm_rate, mode, ld_len; u32_t data[2] = {0}; struct pwm_ir_mode_param_t param; mode = ctrl->mode & PWM_IR_MASK; pwm_acts_ir_param_sw(ctrl, &param , 1, protocol_param); pwm_rate = pwm_clk_rate/1000/param.ir_period; result[0].ir_period = param.ir_period; result[0].ir_duty = param.ir_duty; result[0].ir_lc = param.ir_lc; result[0].ir_pl0_pre = param.ir_pl0_pre; result[0].ir_pl0_post = param.ir_pl0_post; result[0].ir_pl1_pre = param.ir_pl1_pre; result[0].ir_pl1_post = param.ir_pl1_post; result[0].ir_ll = param.ir_ll; result[0].ir_ld = param.ir_ld;//01b if(param.ir_stop_bit) { param.ir_pl = param.ir_pl + 1;//patload 24bit+endflag ctrl->data[1] = (ctrl->data[1] << 1) | (ctrl->data[0] >> 31); ctrl->data[0] = ctrl->data[0] << 1; } ld_len = pwm_acts_ir_get_len(protocol_param->ir_trc_loc); data[0] = ctrl->data[0] >> ld_len; data[1] = ctrl->data[1] >> ld_len; result[0].ir_pl = param.ir_pl; if(param.ir_pl > 32) { result[0].ir_pd0 = data[0]; num_1 = pwm_acts_data_cal(data[0], 32); result[0].ir_pd1 = data[1]; num_1 += pwm_acts_data_cal(data[0], result[0].ir_pl - 32); } else { result[0].ir_pd0 = data[0]; num_1 = pwm_acts_data_cal(data[0], result[0].ir_pl); } num_0 = result[0].ir_pl - num_1; sum_cycle = result[0].ir_lc*result[0].ir_ll; sum_cycle += num_0*((result[0].ir_pl0_pre&0xff) + (result[0].ir_pl0_post&0xff)); sum_cycle += num_1*((result[0].ir_pl1_pre&0xff) + (result[0].ir_pl1_post&0xff)); if(param.ir_Tf) { ir_sl = (param.ir_Tf/1000 - (sum_cycle/pwm_rate)); ir_sl = ir_sl * pwm_rate / result[0].ir_lc; result[0].ir_sl = ir_sl; } else result[0].ir_sl = 0; if(ctrl->buf_num > 1 && (ctrl->mode & PWM_IR_CYCLE_MODE)) result[0].ir_asc = param.ir_asc * 2; else if(ctrl->buf_num > 1) result[0].ir_asc = param.ir_asc + 1; else result[0].ir_asc = param.ir_asc; if(ctrl->buf_num > 1) { if(ctrl->mode & PWM_IR_CYCLE_MODE) pwm_acts_ir_param_sw(ctrl, &param, 2, protocol_param); else pwm_acts_ir_param_sw(ctrl, &param, 2, protocol_param + 1); result[1].ir_lc = param.ir_lc; if(ctrl->lead == NULL) { result[1].ir_ld = param.ir_ld; result[1].ir_ll = param.ir_ll; } else { result[1].ir_ld = ctrl->lead->ld; result[1].ir_ll = ctrl->lead->ll; } if(param.ir_stop_bit) param.ir_pl = param.ir_pl + 1;//patload 24bit+endflag result[1].ir_pl = param.ir_pl; data[0] = data[1] = 0; ld_len = (1 << ld_len) - 1; data[0] = ctrl->data[0] & ld_len; data[1] = ctrl->data[1] & ld_len; if(param.ir_pl > 32) { result[1].ir_pd0 = data[0]; num_1 = pwm_acts_data_cal(data[0], 32); result[1].ir_pd1 = data[1]; num_1 += pwm_acts_data_cal(data[0], result[1].ir_pl - 32); } else { result[1].ir_pd0 = data[0]; num_1 = pwm_acts_data_cal(data[0], result[1].ir_pl); } result[1].ir_sl = 0; num_0 = result[1].ir_pl - num_1; if(ctrl->mode & PWM_IR_CYCLE_MODE) sum_cycle += param.ir_lc * result[1].ir_ll; else sum_cycle = param.ir_lc * result[1].ir_ll; sum_cycle += num_0*((param.ir_pl0_pre&0xff) + (param.ir_pl0_post&0xff)); sum_cycle += num_1*((param.ir_pl1_pre&0xff) + (param.ir_pl1_post&0xff)); if(param.ir_Tf) { ir_sl = (param.ir_Tf/1000 - (sum_cycle/pwm_rate)); ir_sl = ir_sl * pwm_rate / param.ir_lc; result[1].ir_sl = ir_sl; } } result[0].buf_num = ctrl->buf_num; result[0].mode = ctrl->mode; } static int pwm_acts_ir_transfer(const struct device *dev, u32_t pwm, pwm_ir_ctrl_t *ctrl) { const struct pwm_acts_config *cfg = dev->config; struct pwm_acts_data *data = dev->data; uint32_t base, group; u16_t status; struct pwm_ir_mode_param_t result[2] = {0}; struct ir_tx_protocol_param *ir_protocol = ctrl->protocol; struct ir_tx_data_param *ir_data = ctrl->data; k_sem_take(&data->ir_transfer_sync, K_FOREVER); data->ir_event_timeout = ir_protocol->ir_lc_bit_length; pwm_acts_ir_param_cal(ir_data, result, ir_protocol); group = pwm_acts_get_group(pwm); status = data->group_init_status[group]; if((status&PWM_MODE_MASK) != PWM_IR_INIT && (status&PWM_MODE_MASK) != PWM_DEFAULT_REG) {//not ir mode or default LOG_ERR("start a ir mode but have not stop this group bfore!"); return -EINVAL; } pwm = (pwm > 5)?pwm-6:pwm; pwm = (pwm > 5)?pwm-4-group:pwm; base = pwm_acts_get_reg_base(cfg->base, group); if(group == PWM_GROUP5_REG) {//only group 5 support ir pwm_acts_ir_tx(cfg, data, pwm, result, base); } else { LOG_ERR("unsuported channel: %d",pwm); return -EINVAL; } data->group_init_status[group] = PWM_IR_INIT | PWM_chan(pwm) | status; return 0; } static int pwm_acts_ir_stop_transfer(const struct device *dev) { const struct pwm_acts_config *cfg = dev->config; struct pwm_acts_data *data = dev->data; struct acts_pwm_ir *pwm_ir = (struct acts_pwm_ir *)PWM_IR(cfg->base); if (pwm_ir->ir_ctl & PWM_IRCTL_START) { data->manual_stop_flag = true; pwm_ir->ir_ctl |= PWM_IRCTL_STOP; } k_sem_take(&data->ir_sync, K_FOREVER); k_sem_give(&data->ir_transfer_sync); return 0; } #ifdef CONFIG_PWM_TAI_FULL_FUNC static int pwm_acts_pin_stop(const struct device *dev, uint32_t pwm) { return 0; } #endif static int pwm_acts_pin_repeat(const struct device *dev, uint32_t pwm, uint8_t repeat) { const struct pwm_acts_config *cfg = dev->config; struct pwm_acts_data *data = dev->data; uint32_t base,group; u16_t status; unsigned int key; if(repeat == 0) return -EINVAL; key = irq_lock(); group = pwm_acts_get_group(pwm); status = data->group_init_status[group]; pwm = (pwm > 5)?pwm-6:pwm; pwm = (pwm > 5)?pwm-4-group:pwm; base = pwm_acts_get_reg_base(cfg->base, group); switch(group){ case PWM_GROUP0_REG: sys_write32(PWM_INTCTL_G0REPEAT, PWM_INT_CTL(cfg->base)); break; case PWM_GROUP1_REG: sys_write32(PWM_INTCTL_G1REPEAT, PWM_INT_CTL(cfg->base)); break; case PWM_GROUP2_REG: sys_write32(PWM_INTCTL_G2C0 | PWM_INTCTL_G2REPEAT, PWM_INT_CTL(cfg->base)); break; case PWM_GROUP3_REG: sys_write32(PWM_INTCTL_G3C0 | PWM_INTCTL_G3REPEAT, PWM_INT_CTL(cfg->base)); break; case PWM_GROUP4_REG: sys_write32(PWM_INTCTL_G4C0 | PWM_INTCTL_G4REPEAT, PWM_INT_CTL(cfg->base)); break; case PWM_GROUP5_REG: sys_write32(PWM_INTCTL_G5C0 | PWM_INTCTL_G5REPEAT, PWM_INT_CTL(cfg->base)); break; default: return -EINVAL; } struct acts_pwm_groupx *pwm_reg = (struct acts_pwm_groupx *)base; pwm_reg->repeat = repeat; pwm_reg->ctrl |= PWMx_CTRL_HUA; // k_sleep(K_USEC(32)); // pwm_reg->ctrl |= PWMx_CTRL_CU; sys_write32(0xffffffff, PWM_PENDING(cfg->base)); irq_unlock(key); return 0; } /* * Get the clock rate (cycles per second) for a PWM pin. * * Parameters * dev: Pointer to PWM device structure * pwm: PWM port number * cycles: Pointer to the memory to store clock rate (cycles per second) * * return 0, or negative errno code */ #ifdef CONFIG_PWM_TAI_FULL_FUNC static int pwm_acts_get_cycles_per_sec(const struct device *dev, uint32_t pwm, u64_t *cycles) { const struct pwm_acts_config *cfg = dev->config; struct pwm_acts_data *data = dev->data; u32_t group; group = pwm_acts_get_group(pwm); if(group == PWM_GROUP5_REG) *cycles = pwm_clk_rate; else *cycles = pwm_normal_clk_rate; return 0; } #endif static int pwm_acts_reset_peripheral(int reset_id) { sys_write32((sys_read32(RMU_MRCR0) & ~(0x3f << reset_id)), RMU_MRCR0); sys_write32(((0x3f << reset_id) | sys_read32(RMU_MRCR0)), RMU_MRCR0); return 0; } static int pwm_acts_ir_tx_power(const struct device *dev, uint8_t level) { struct pwm_acts_data *data = dev->data; if(level > 7) { LOG_ERR("error param level:%d", level); return -1; } data->ir_pout = level; return 0; } int pwm_acts_init(const struct device *dev) { const struct pwm_acts_config *cfg = dev->config; struct pwm_acts_data *data = dev->data; acts_pinmux_setup_pins(cfg->pinmux, cfg->pinmux_size - 1); /* reset pwm controller */ pwm_acts_reset_peripheral(cfg->reset_id); cfg->irq_config_func(); for(int i = 0;i < 5;i++) { /* enable pwm controller clock */ acts_clock_peripheral_enable(cfg->clock_id + i); /* 32kHZ */ pwm_acts_set_clk(cfg, i, pwm_normal_clk_rate); } acts_clock_peripheral_enable(cfg->clock_id + 5); pwm_acts_set_clk(cfg, 5, pwm_clk_rate);//pwm_normal_clk_rate);// memset(data->group_init_status, 0 ,6); k_sem_init(&data->ir_sync, 0, 1); k_sem_init(&data->ir_transfer_sync, 0, 1); k_sem_give(&data->ir_transfer_sync); if (cfg->dma_dev_name != NULL) { data->dma_dev = (struct device *)device_get_binding(cfg->dma_dev_name); if (!data->dma_dev) { LOG_ERR("Bind DMA device %s error", cfg->dma_dev_name); return -ENOENT; } k_sem_init(&data->dma_sync, 0, 1); data->dma_chan = dma_request(data->dma_dev, 0xff); if(data->dma_chan < 0){ LOG_ERR("dma-dev rxchan config err chan=%d\n", data->dma_chan); return -ENODEV; } } data->ir_pout = 0; data->manual_stop_flag = false; k_timer_init(&data->timer, pwm_acts_ir_timeout_event, NULL); k_timer_user_data_set(&data->timer, (void *)data); return 0; } const struct pwm_driver_api pwm_acts_driver_api = { .pin_set = pwm_acts_pin_set, .ir_transfer = pwm_acts_ir_transfer, .ir_stop_transfer = pwm_acts_ir_stop_transfer, .pin_repeat = pwm_acts_pin_repeat, .ir_tx_power_set = pwm_acts_ir_tx_power, #ifdef CONFIG_PWM_TAI_FULL_FUNC .get_cycles_per_sec = pwm_acts_get_cycles_per_sec, .set_breath = pwm_acts_set_breath_mode, .set_program = pwm_acts_set_program_mode, .pin_stop = pwm_acts_pin_stop, #endif }; static struct pwm_acts_data pwm_acts_data; static const struct acts_pin_config pins_pwm[] = {CONFIG_PWM_MFP}; static void pwm_acts_irq_config(void); static const struct pwm_acts_config pwm_acts_config = { .base = PWM_REG_BASE, .cycle = CONFIG_PWM_CYCLE, .clock_id = CLOCK_ID_PWM0, .reset_id = RESET_ID_PWM0, .dma_dev_name = CONFIG_DMA_0_NAME, .txdma_id = CONFIG_PWM_DMA_ID, .pinmux = pins_pwm, .irq_config_func = pwm_acts_irq_config, .pinmux_size = ARRAY_SIZE(pins_pwm), }; #if CONFIG_PWM static void pwm_acts_pinmux_setup_pins(const struct acts_pin_config *pinconf, int pins, u8_t flag) { int i; for (i = 0; i < pins; i++) { if(flag) acts_pinmux_set(pinconf[i].pin_num, pinconf[i].mode); else acts_pinmux_set(pinconf[i].pin_num, 0x1000); } } static int pwm_acts_active(const struct device *dev) { const struct pwm_acts_config *cfg = dev->config; pwm_acts_pinmux_setup_pins(cfg->pinmux, cfg->pinmux_size - 1, 1); pwm_acts_reset_peripheral(cfg->reset_id); cfg->irq_config_func(); for(int i = 0;i < 5;i++) { acts_clock_peripheral_enable(cfg->clock_id + i); pwm_acts_set_clk(cfg, i, pwm_normal_clk_rate); } acts_clock_peripheral_enable(cfg->clock_id + 5); pwm_acts_set_clk(cfg, 5, pwm_clk_rate);//pwm_normal_clk_rate);// return 0; } static int pwm_acts_suspend(const struct device *dev) { struct pwm_acts_data *data = dev->data; const struct pwm_acts_config *cfg = dev->config; u16_t status; for(int i = 0; i < PWM_GROUP_MAX; i++) { status = data->group_init_status[i] & PWM_MODE_MASK; if((status != PWM_DEFAULT_REG) &&(status != PWM_FIX_INIT)) { return -ESRCH; } status = data->group_init_status[i]; if((PWM_FIX_INIT == (status & PWM_MODE_MASK)) && ((status & PWM_chan_act_MASK) != 0)) { return -ESRCH; } } pwm_acts_pinmux_setup_pins(cfg->pinmux, cfg->pinmux_size, 0); memset(data->group_init_status, 0 ,6); sys_write32((sys_read32(RMU_MRCR0) & ~(0x3f << cfg->reset_id)), RMU_MRCR0); for(int i = 0; i < PWM_GROUP_MAX; i++) acts_clock_peripheral_disable(cfg->clock_id + i); return 0; } static int pwm_acts_pm_control(const struct device *dev, uint32_t command, void *context, device_pm_cb cb, void *arg) { int ret = 0; uint32_t state = *((uint32_t*)context); static u8_t sleep_status = 1; LOG_DBG("command:0x%x state:%d", command, state); if (command != DEVICE_PM_SET_POWER_STATE) return 0; switch (state) { case DEVICE_PM_ACTIVE_STATE: if(sleep_status == 0) pwm_acts_active(dev); sleep_status = 1; break; case DEVICE_PM_SUSPEND_STATE: ret = pwm_acts_suspend(dev); if(ret == 0) sleep_status = 0; break; case DEVICE_PM_EARLY_SUSPEND_STATE: case DEVICE_PM_LATE_RESUME_STATE: case DEVICE_PM_LOW_POWER_STATE: case DEVICE_PM_OFF_STATE: break; default: ret = -ESRCH; } return ret; } DEVICE_DEFINE(pwm_acts, CONFIG_PWM_NAME, pwm_acts_init, pwm_acts_pm_control, &pwm_acts_data, &pwm_acts_config, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &pwm_acts_driver_api); static void pwm_acts_irq_config(void) { IRQ_CONNECT(IRQ_ID_PWM, CONFIG_PWM_IRQ_PRI, pwm_acts_isr, DEVICE_GET(pwm_acts), 0); irq_enable(IRQ_ID_PWM); //IRQ_CONNECT(IRQ_ID_KEY_WAKEUP, 1, // mxkeypad_acts_wakeup_isr, DEVICE_GET(mxkeypad_acts), 0); } #endif 请记住以上代码内容
最新发布
06-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值