二分查找数组必须为有序数组,查找速度比无序数组快,插入速度比无序数组慢。
查找次数为数组长度的开方。
方法:
public static int find(long searchKey) {
long[] arr = new long[100];
arr[0] = 11;
arr[1] = 22;
arr[2] = 33;
arr[3] = 44;
arr[4] = 55;
arr[5] = 66;
arr[6] = 77;
arr[7] = 88;
arr[8] = 99;
arr[9] = 100;
int countElems = 10;
int lowerElem = 0;
int upperElem = countElems - 1;
int currIn;
while (true) {
currIn = (lowerElem + upperElem) / 2;
if (arr[currIn] == searchKey) {
return currIn;
} else if (lowerElem > upperElem) {
return countElems;
} else {
if (arr[currIn] < searchKey) {
lowerElem = currIn + 1;
} else {
upperElem = currIn - 1;
}
}
}
}
调用:
public static void main(String[] args) {
long a = find(111);
System.out.println(a);
}
查找次数为数组长度的开方。
方法:
public static int find(long searchKey) {
long[] arr = new long[100];
arr[0] = 11;
arr[1] = 22;
arr[2] = 33;
arr[3] = 44;
arr[4] = 55;
arr[5] = 66;
arr[6] = 77;
arr[7] = 88;
arr[8] = 99;
arr[9] = 100;
int countElems = 10;
int lowerElem = 0;
int upperElem = countElems - 1;
int currIn;
while (true) {
currIn = (lowerElem + upperElem) / 2;
if (arr[currIn] == searchKey) {
return currIn;
} else if (lowerElem > upperElem) {
return countElems;
} else {
if (arr[currIn] < searchKey) {
lowerElem = currIn + 1;
} else {
upperElem = currIn - 1;
}
}
}
}
调用:
public static void main(String[] args) {
long a = find(111);
System.out.println(a);
}
本文详细介绍了二分查找算法的基本原理、实现步骤及在有序数组中的高效查找过程。通过实例展示了如何在已排序的数组中快速定位目标元素,并讨论了与无序数组相比的性能优势与限制。
4250

被折叠的 条评论
为什么被折叠?



