当BatchNormalize遇到异常值,导致预测结果都是NaN

问题背景

最近使用DNN模型来做排序,发现近几天的NDCG离线指标下跌得很厉害。于是下载模型自己在本地评测了一下,预测结果都是NaN,于是把各层的模型参数以及各层的输出都打印出来,发现BatchNormalize中的moving_variance(方差)的某一维是NaN,最后一查果然是这一维特征异常了。为了把事情弄清楚,写这个blog记录一下。

BatchNormalize(BN)基础知识

BN的提出是为了解决神经网络中Internal Covariate Shift的问题,Internal Covariate Shift简单地说就是各层网络的输出会产生分布的变化,而分布变化使神经网络比较难收敛。BN的思想也很简单,就是通过把输入各个特征的分布转化成均值为0,方差为1的正态分布上去。训练过程是在mini-batch中进行操作的,具体也就是求出均值、标准差,通过下边式子对输入特征进行转化。
在这里插入图片描述为了保留原来的特征分布信息,加入了可学习的参数:

在这里插入图片描述
可以看出,当伽马等于标准差,贝塔等于均值时就完全还原了输入。

但是在模型预测时mini-batch可能只有一个实例,所以在实现中的做法是保留每一个batch计算的均值和方差,通过平滑的方式计算预测使用的均值和方差:

问题复现

使用了如下代码进行了问题的复现:

import tensorflow as tf
import numpy as np

bn_input = tf.cast([[1, 1, 3
import tkinter as tk from tkinter import ttk, filedialog, messagebox import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Lambda from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler import os import time import warnings import matplotlib.dates as mdates warnings.filterwarnings('ignore', category=UserWarning, module='tensorflow') mpl.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS'] mpl.rcParams['axes.unicode_minus'] = False # 关键修复:使用 ASCII 减号 # 设置中文字体支持 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False class PINNModel(tf.keras.Model): def __init__(self, num_layers=4, hidden_units=32, dropout_rate=0.1, **kwargs): super(PINNModel, self).__init__(**kwargs) self.dense_layers = [] self.dropout_layers = [] # 创建隐藏层和对应的Dropout层 for _ in range(num_layers): self.dense_layers.append(Dense(hidden_units, activation='tanh')) self.dropout_layers.append(tf.keras.layers.Dropout(dropout_rate)) self.final_layer = Dense(1, activation='linear') # 添加更多带约束的物理参数 # 基本衰减系数 self.k1_raw = tf.Variable(0.1, trainable=True, dtype=tf.float32, name='k1_raw') self.k1 = tf.math.sigmoid(self.k1_raw) * 0.5 # 约束在0-0.5之间 # 水位依赖的衰减系数 self.k2_raw = tf.Variable(0.01, trainable=True, dtype=tf.float32, name='k2_raw') self.k2 = tf.math.sigmoid(self.k2_raw) * 0.1 # 约束在0-0.1之间 # 非线性项系数 self.alpha_raw = tf.Variable(0.1, trainable=True, dtype=tf.float32, name='alpha_raw') self.alpha = tf.math.sigmoid(self.alpha_raw) * 1.0 # 约束在0-1.0之间 # 外部影响系数(如降雨、温度等) self.beta_raw = tf.Variable(0.05, trainable=True, dtype=tf.float32, name='beta_raw') self.beta = tf.math.sigmoid(self.beta_raw) * 0.2 # 约束在0-0.2之间 def call(self, inputs, training=False): t, h, dt = inputs # 添加更多特征交互项 interaction = tf.concat([ t * h, h * dt, t * dt, (t * h * dt) ], axis=1) # 将时间、水位和时间步长作为输入特征 x = tf.concat([t, h, dt, interaction], axis=1) # 依次通过所有隐藏层和Dropout层 for dense_layer, dropout_layer in zip(self.dense_layers, self.dropout_layers): x = dense_layer(x) x = dropout_layer(x, training=training) # 仅在训练时应用Dropout return self.final_layer(x) def physics_loss(self, t, h_current, dt, training=False): """计算物理损失(改进的离散渗流方程)""" # 预测下一时刻的水位 h_next_pred = self([t, h_current, dt], training=training) # 改进的物理方程:非线性衰减模型 + 外部影响项 # 添加数值保护 exponent = - (self.k1 + self.k2 * h_current) * dt exponent = tf.clip_by_value(exponent, -50.0, 50.0) # 防止指数爆炸 decay_term = h_current * tf.exp(exponent) # 同样保护第二个指数项 beta_exp = -self.beta * dt beta_exp = tf.clip_by_value(beta_exp, -50.0, 50.0) external_term = self.alpha * (1 - tf.exp(beta_exp)) residual = h_next_pred - (decay_term + external_term) return tf.reduce_mean(tf.square(residual)) class DamSeepageModel: def __init__(self, root): self.root = root self.root.title("大坝渗流预测模型(PINNs)") self.root.geometry("1200x800") # 初始化数据 self.train_df = None # 训练集 self.test_df = None # 测试集 self.model = None self.scaler_t = MinMaxScaler(feature_range=(0, 1)) self.scaler_h = MinMaxScaler(feature_range=(0, 1)) self.scaler_dt = MinMaxScaler(feature_range=(0, 1)) self.evaluation_metrics = {} # 创建主界面 self.create_widgets() def create_widgets(self): # 创建主框架 main_frame = ttk.Frame(self.root, padding=10) main_frame.pack(fill=tk.BOTH, expand=True) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="模型控制", padding=10) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件选择部分 file_frame = ttk.LabelFrame(control_frame, text="数据文件", padding=10) file_frame.pack(fill=tk.X, pady=5) # 训练集选择 ttk.Label(file_frame, text="训练集:").grid(row=0, column=0, sticky=tk.W, pady=5) self.train_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.train_file_var, width=30, state='readonly').grid( row=0, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("train")).grid(row=0, column=2) # 测试集选择 ttk.Label(file_frame, text="测试集:").grid(row=1, column=0, sticky=tk.W, pady=5) self.test_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.test_file_var, width=30, state='readonly').grid(row=1, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("test")).grid(row=1, column=2) # PINNs参数设置 param_frame = ttk.LabelFrame(control_frame, text="PINNs参数", padding=10) param_frame.pack(fill=tk.X, pady=10) # 验证集切分比例 ttk.Label(param_frame, text="验证集比例:").grid(row=0, column=0, sticky=tk.W, pady=5) self.split_ratio_var = tk.DoubleVar(value=0.2) ttk.Spinbox(param_frame, from_=0, to=1, increment=0.05, textvariable=self.split_ratio_var, width=10).grid(row=0, column=1, padx=5) # 隐藏层数量 ttk.Label(param_frame, text="网络层数:").grid(row=1, column=0, sticky=tk.W, pady=5) self.num_layers_var = tk.IntVar(value=4) ttk.Spinbox(param_frame, from_=2, to=8, increment=1, textvariable=self.num_layers_var, width=10).grid(row=1, column=1, padx=5) # 每层神经元数量 ttk.Label(param_frame, text="神经元数/层:").grid(row=2, column=0, sticky=tk.W, pady=5) self.hidden_units_var = tk.IntVar(value=32) ttk.Spinbox(param_frame, from_=16, to=128, increment=4, textvariable=self.hidden_units_var, width=10).grid(row=2, column=1, padx=5) # 训练轮次 ttk.Label(param_frame, text="训练轮次:").grid(row=3, column=0, sticky=tk.W, pady=5) self.epochs_var = tk.IntVar(value=500) ttk.Spinbox(param_frame, from_=100, to=2000, increment=100, textvariable=self.epochs_var, width=10).grid(row=3, column=1, padx=5) # 物理损失权重 ttk.Label(param_frame, text="物理损失权重:").grid(row=4, column=0, sticky=tk.W, pady=5) self.physics_weight_var = tk.DoubleVar(value=0.5) ttk.Spinbox(param_frame, from_=0.1, to=1.0, increment=0.1, textvariable=self.physics_weight_var, width=10).grid(row=4, column=1, padx=5) # 控制按钮 btn_frame = ttk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) ttk.Button(btn_frame, text="训练模型", command=self.train_model).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="预测结果", command=self.predict).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="保存结果", command=self.save_results).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="重置", command=self.reset).pack(side=tk.RIGHT, padx=5) # 状态栏 self.status_var = tk.StringVar(value="就绪") status_bar = ttk.Label(control_frame, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(fill=tk.X, side=tk.BOTTOM) # 右侧结果显示区域 result_frame = ttk.Frame(main_frame) result_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建标签页 self.notebook = ttk.Notebook(result_frame) self.notebook.pack(fill=tk.BOTH, expand=True) # 损失曲线标签页 self.loss_frame = ttk.Frame(self.notebook) self.notebook.add(self.loss_frame, text="训练损失") # 在预测结果标签页 self.prediction_frame = ttk.Frame(self.notebook) self.notebook.add(self.prediction_frame, text="预测结果") # 指标显示 self.metrics_var = tk.StringVar() metrics_label = ttk.Label( self.prediction_frame, textvariable=self.metrics_var, font=('TkDefaultFont', 10, 'bold'), relief='ridge', padding=5 ) metrics_label.pack(fill=tk.X, padx=5, pady=5) # 创建图表容器Frame chart_frame = ttk.Frame(self.prediction_frame) chart_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5) # 初始化绘图区域 self.fig, self.ax = plt.subplots(figsize=(10, 6)) self.canvas = FigureCanvasTkAgg(self.fig, master=chart_frame) self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) # 添加Matplotlib工具栏(缩放、平移等) from matplotlib.backends.backend_tkagg import NavigationToolbar2Tk self.toolbar = NavigationToolbar2Tk(self.canvas, chart_frame) self.toolbar.update() self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) # 损失曲线画布(同样添加工具栏) loss_chart_frame = ttk.Frame(self.loss_frame) loss_chart_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5) self.loss_fig, self.loss_ax = plt.subplots(figsize=(10, 4)) self.loss_canvas = FigureCanvasTkAgg(self.loss_fig, master=loss_chart_frame) self.loss_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) self.loss_toolbar = NavigationToolbar2Tk(self.loss_canvas, loss_chart_frame) self.loss_toolbar.update() self.loss_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) def select_file(self, file_type): """选择Excel文件并计算时间步长""" try: file_path = filedialog.askopenfilename( title=f"选择{file_type}集Excel文件", filetypes=[("Excel文件", "*.xlsx *.xls"), ("所有文件", "*.*")] ) if not file_path: return df = pd.read_excel(file_path) # 验证必需列是否存在 required_cols = ['year', 'month', 'day', '水位'] missing_cols = [col for col in required_cols if col not in df.columns] if missing_cols: messagebox.showerror("列名错误", f"缺少必需列: {', '.join(missing_cols)}") return # 时间特征处理 time_features = ['year', 'month', 'day'] missing_time_features = [feat for feat in time_features if feat not in df.columns] if missing_time_features: messagebox.showerror("列名错误", f"Excel文件缺少预处理后的时间特征列: {', '.join(missing_time_features)}") return # 创建时间戳列 (增强兼容性) time_cols = ['year', 'month', 'day'] if 'hour' in df.columns: time_cols.append('hour') if 'minute' in df.columns: time_cols.append('minute') if 'second' in df.columns: time_cols.append('second') # 填充缺失的时间单位 for col in ['hour', 'minute', 'second']: if col not in df.columns: df[col] = 0 df['datetime'] = pd.to_datetime(df[time_cols]) # 设置时间索引 df = df.set_index('datetime') # 计算相对时间(天) df['days'] = (df.index - df.index[0]).days # 新增:计算时间步长dt(单位:天) df['dt'] = df.index.to_series().diff().dt.total_seconds() / 86400 # 精确到秒级 # 处理时间步长异常值 if len(df) > 1: # 计算有效时间步长(排除<=0的值) valid_dt = df['dt'][df['dt'] > 0] if len(valid_dt) > 0: avg_dt = valid_dt.mean() else: avg_dt = 1.0 else: avg_dt = 1.0 # 替换非正值 df.loc[df['dt'] <= 0, 'dt'] = avg_dt # 填充缺失值 df['dt'] = df['dt'].fillna(avg_dt) # 保存数据 if file_type == "train": self.train_df = df self.train_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载训练集: {len(self.train_df)}条数据") else: self.test_df = df self.test_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载测试集: {len(self.test_df)}条数据") except Exception as e: error_msg = f"文件读取失败: {str(e)}\n\n请确保:\n1. 文件不是打开状态\n2. 文件格式正确\n3. 包含必需的时间和水位列" messagebox.showerror("文件错误", error_msg) def calculate_metrics(self, y_true, y_pred): """计算评估指标""" from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score mse = mean_squared_error(y_true, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_true, y_pred) non_zero_idx = np.where(y_true != 0)[0] if len(non_zero_idx) > 0: mape = np.mean(np.abs((y_true[non_zero_idx] - y_pred[non_zero_idx]) / y_true[non_zero_idx])) * 100 else: mape = float('nan') r2 = r2_score(y_true, y_pred) return { 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'MAPE': mape, # 修正键名 'R2': r2 } def train_model(self): """训练PINNs模型(带早停机制+训练指标监控)""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 从训练集中切分训练子集和验证子集(时间顺序切分) split_ratio = 1 - self.split_ratio_var.get() split_idx = int(len(self.train_df) * split_ratio) train_subset = self.train_df.iloc[:split_idx] valid_subset = self.train_df.iloc[split_idx:] # 检查数据量是否足够 if len(train_subset) < 2 or len(valid_subset) < 2: messagebox.showerror("数据错误", "训练集数据量不足(至少需要2个时间步)") return # 数据预处理 - 分别归一化不同特征 # 归一化时间特征 t_train = train_subset['days'].values[1:].reshape(-1, 1) self.scaler_t.fit(t_train) t_train_scaled = self.scaler_t.transform(t_train).astype(np.float32) # 归一化水位特征 h_train = train_subset['水位'].values[:-1].reshape(-1, 1) self.scaler_h.fit(h_train) h_train_scaled = self.scaler_h.transform(h_train).astype(np.float32) # 归一化时间步长特征 dt_train = train_subset['dt'].values[1:].reshape(-1, 1) self.scaler_dt.fit(dt_train) dt_train_scaled = self.scaler_dt.transform(dt_train).astype(np.float32) # 归一化标签(下一时刻水位) h_next_train = train_subset['水位'].values[1:].reshape(-1, 1) h_next_train_scaled = self.scaler_h.transform(h_next_train).astype(np.float32) # 准备验证数据(同样进行归一化) t_valid = valid_subset['days'].values[1:].reshape(-1, 1) t_valid_scaled = self.scaler_t.transform(t_valid).astype(np.float32) h_valid = valid_subset['水位'].values[:-1].reshape(-1, 1) h_valid_scaled = self.scaler_h.transform(h_valid).astype(np.float32) dt_valid = valid_subset['dt'].values[1:].reshape(-1, 1) dt_valid_scaled = self.scaler_dt.transform(dt_valid).astype(np.float32) h_next_valid_scaled = self.scaler_h.transform( valid_subset['水位'].values[1:].reshape(-1, 1) ).astype(np.float32) # 原始值用于指标计算 h_next_train_true = h_next_train h_next_valid_true = valid_subset['水位'].values[1:].reshape(-1, 1) # 创建模型和优化器 self.model = PINNModel( num_layers=self.num_layers_var.get(), hidden_units=self.hidden_units_var.get() ) # 创建动态学习率调度器 initial_lr = 0.001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=initial_lr, decay_steps=100, # 每100步衰减一次 decay_rate=0.95, # 衰减率 staircase=True # 阶梯式衰减 ) optimizer = Adam(learning_rate=lr_schedule) # 在训练循环中,使用归一化后的数据 train_dataset = tf.data.Dataset.from_tensor_slices( ((t_train_scaled, h_train_scaled, dt_train_scaled), h_next_train_scaled) ) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(32) valid_dataset = tf.data.Dataset.from_tensor_slices( ((t_valid_scaled, h_valid_scaled, dt_valid_scaled), h_next_valid_scaled) ) valid_dataset = valid_dataset.batch(32) # 初始化训练历史记录列表 train_data_loss_history = [] physics_loss_history = [] valid_data_loss_history = [] train_metrics_history = [] valid_metrics_history = [] # 早停机制参数 patience = int(self.epochs_var.get() / 3) min_delta = 1e-4 best_valid_loss = float('inf') wait = 0 best_epoch = 0 best_weights = None start_time = time.time() # 自定义训练循环 for epoch in range(self.epochs_var.get()): # 获取当前学习率 - 修复这里 current_lr = optimizer.learning_rate.numpy() # 直接访问属性而不是调用 # 训练阶段 epoch_train_data_loss = [] epoch_physics_loss = [] # 收集训练预测值(归一化后) train_pred_scaled = [] for step, ((t_batch, h_batch, dt_batch), h_next_batch) in enumerate(train_dataset): with tf.GradientTape() as tape: # 预测下一时刻水位 h_pred = self.model([t_batch, h_batch, dt_batch], training=True) data_loss = tf.reduce_mean(tf.square(h_next_batch - h_pred)) # 动态调整物理损失权重 current_physics_weight = tf.minimum( self.physics_weight_var.get() * (1.0 + epoch / self.epochs_var.get()), 0.8 ) # 计算物理损失(传入时间步长dt) physics_loss = self.model.physics_loss(t_batch, h_batch, dt_batch, training=True) loss = data_loss + current_physics_weight * physics_loss grads = tape.gradient(loss, self.model.trainable_variables) optimizer.apply_gradients(zip(grads, self.model.trainable_variables)) epoch_train_data_loss.append(data_loss.numpy()) epoch_physics_loss.append(physics_loss.numpy()) train_pred_scaled.append(h_pred.numpy()) # 保存训练预测值(归一化) # 合并训练预测值(归一化后) train_pred_scaled = np.concatenate(train_pred_scaled, axis=0) # 反归一化得到原始预测值 train_pred_true = self.scaler_h.inverse_transform(train_pred_scaled) # 计算训练集指标(使用原始真实值和预测值) train_metrics = self.calculate_metrics( y_true=h_next_train_true.flatten(), y_pred=train_pred_true.flatten() ) train_metrics_history.append(train_metrics) # 验证阶段 epoch_valid_data_loss = [] valid_pred_scaled = [] for ((t_v_batch, h_v_batch, dt_v_batch), h_v_next_batch) in valid_dataset: h_v_pred = self.model([t_v_batch, h_v_batch, dt_v_batch], training=False) # 验证时不启用Dropout valid_data_loss = tf.reduce_mean(tf.square(h_v_next_batch - h_v_pred)) epoch_valid_data_loss.append(valid_data_loss.numpy()) valid_pred_scaled.append(h_v_pred.numpy()) # 保存验证预测值(归一化) # 合并验证预测值(归一化后) valid_pred_scaled = np.concatenate(valid_pred_scaled, axis=0) # 反归一化得到原始预测值 valid_pred_true = self.scaler_h.inverse_transform(valid_pred_scaled) # 计算验证集指标(使用原始真实值和预测值) valid_metrics = self.calculate_metrics( y_true=h_next_valid_true.flatten(), y_pred=valid_pred_true.flatten() ) valid_metrics_history.append(valid_metrics) # 计算平均损失 avg_train_data_loss = np.mean(epoch_train_data_loss) avg_physics_loss = np.mean(epoch_physics_loss) avg_valid_data_loss = np.mean(epoch_valid_data_loss) # 记录损失 train_data_loss_history.append(avg_train_data_loss) physics_loss_history.append(avg_physics_loss) valid_data_loss_history.append(avg_valid_data_loss) # 早停机制逻辑 current_valid_loss = avg_valid_data_loss # 早停机制逻辑 current_valid_loss = avg_valid_data_loss if current_valid_loss < best_valid_loss - min_delta: best_valid_loss = current_valid_loss best_epoch = epoch + 1 wait = 0 best_weights = self.model.get_weights() else: wait += 1 if wait >= patience: self.status_var.set(f"触发早停!最佳轮次: {best_epoch},最佳验证损失: {best_valid_loss:.4f}") if best_weights is not None: self.model.set_weights(best_weights) break # 确保在此处退出循环 # 更新状态(添加当前学习率显示) if epoch % 1 == 0: # 提取当前训练/验证的关键指标 train_rmse = train_metrics['RMSE'] valid_rmse = valid_metrics['RMSE'] train_r2 = train_metrics['R2'] valid_r2 = valid_metrics['R2'] elapsed = time.time() - start_time self.status_var.set( f"训练中 | 轮次: {epoch + 1}/{self.epochs_var.get()} | " f"学习率: {current_lr:.6f} | " f"训练RMSE: {train_rmse:.4f} | 验证RMSE: {valid_rmse:.4f} | " f"训练R²: {train_r2:.4f} | 验证R²: {valid_r2:.4f} | " f"k1: {self.model.k1.numpy():.6f}, k2: {self.model.k2.numpy():.6f} | 时间: {elapsed:.1f}秒 | 早停等待: {wait}/{patience}" ) self.root.update() # 绘制损失曲线 self.loss_ax.clear() epochs_range = range(1, len(train_data_loss_history) + 1) self.loss_ax.plot(epochs_range, train_data_loss_history, 'b-', label='训练数据损失') self.loss_ax.plot(epochs_range, physics_loss_history, 'r--', label='物理损失') self.loss_ax.plot(epochs_range, valid_data_loss_history, 'g-.', label='验证数据损失') self.loss_ax.set_title('PINNs训练与验证损失') self.loss_ax.set_xlabel('轮次') self.loss_ax.set_ylabel('损失', rotation=0) self.loss_ax.legend() self.loss_ax.grid(True, alpha=0.3) self.loss_ax.set_yscale('log') self.loss_canvas.draw() # 训练完成提示 elapsed = time.time() - start_time if wait >= patience: completion_msg = ( f"早停触发 | 最佳轮次: {best_epoch} | 最佳验证损失: {best_valid_loss:.4f} | " f"最佳验证RMSE: {valid_metrics_history[best_epoch - 1]['RMSE']:.4f} | " f"总时间: {elapsed:.1f}秒" ) else: completion_msg = ( f"训练完成 | 总轮次: {self.epochs_var.get()} | " f"最终训练RMSE: {train_metrics_history[-1]['RMSE']:.4f} | " f"最终验证RMSE: {valid_metrics_history[-1]['RMSE']:.4f} | " f"最终训练R²: {train_metrics_history[-1]['R2']:.4f} | " f"最终验证R²: {valid_metrics_history[-1]['R2']:.4f} | " f"总时间: {elapsed:.1f}秒" ) # 保存训练历史 self.train_history = { 'train_data_loss': train_data_loss_history, 'physics_loss': physics_loss_history, 'valid_data_loss': valid_data_loss_history, 'train_metrics': train_metrics_history, 'valid_metrics': valid_metrics_history } # 保存学习到的物理参数 self.learned_params = { "k1": self.model.k1.numpy(), "k2": self.model.k2.numpy(), "alpha": self.model.alpha.numpy(), "beta": self.model.beta.numpy() } self.status_var.set(completion_msg) messagebox.showinfo("训练完成", f"PINNs模型训练成功完成!\n{completion_msg}") except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") def predict(self): """使用PINNs模型进行递归预测(带Teacher Forcing和蒙特卡洛Dropout)""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测(使用Teacher Forcing和MC Dropout)...") self.root.update() # 预处理测试数据 - 归一化 t_test = self.test_df['days'].values.reshape(-1, 1) t_test_scaled = self.scaler_t.transform(t_test).astype(np.float32) dt_test = self.test_df['dt'].values.reshape(-1, 1) dt_test_scaled = self.scaler_dt.transform(dt_test).astype(np.float32) h_test = self.test_df['水位'].values.reshape(-1, 1) h_test_scaled = self.scaler_h.transform(h_test).astype(np.float32) # 改进的递归预测参数 n = len(t_test) mc_iterations = 100 adaptive_forcing = True # 启用自适应教师强制 # 存储蒙特卡洛采样结果 mc_predictions_scaled = np.zeros((mc_iterations, n, 1), dtype=np.float32) # 进行多次蒙特卡洛采样 for mc_iter in range(mc_iterations): predicted_scaled = np.zeros((n, 1), dtype=np.float32) predicted_scaled[0] = h_test_scaled[0] # 第一个点使用真实值 # 递归预测(带自适应教师强制) for i in range(1, n): # 自适应教师强制:后期阶段增加真实值使用频率 if adaptive_forcing: # 前期70%概率使用真实值,后期提高到90% teacher_forcing_prob = 0.7 + 0.2 * min(1.0, i / (0.7 * n)) else: teacher_forcing_prob = 0.7 # 决定使用真实值还是预测值 use_actual = np.random.rand() < teacher_forcing_prob if use_actual and i < n - 1: # 不能使用未来值 h_prev = h_test_scaled[i - 1:i] else: h_prev = predicted_scaled[i - 1:i] t_prev = t_test_scaled[i - 1:i] dt_i = dt_test_scaled[i:i + 1] # 物理约束增强:添加物理模型预测作为参考 h_pred = self.model([t_prev, h_prev, dt_i], training=True) # 物理模型预测值(用于约束) k1 = self.learned_params['k1'] k2 = self.learned_params['k2'] alpha = self.learned_params['alpha'] beta = self.learned_params['beta'] # 物理方程预测 exponent = - (k1 + k2 * h_prev) * dt_i decay_term = h_prev * np.exp(exponent) external_term = alpha * (1 - np.exp(-beta * dt_i)) physics_pred = decay_term + external_term # 混合预测:神经网络预测与物理模型预测加权平均 physics_weight = 0.3 # 物理模型权重 final_pred = physics_weight * physics_pred + (1 - physics_weight) * h_pred.numpy() predicted_scaled[i] = final_pred[0][0] mc_predictions_scaled[mc_iter] = predicted_scaled # 计算预测统计量 mean_pred_scaled = np.mean(mc_predictions_scaled, axis=0) std_pred_scaled = np.std(mc_predictions_scaled, axis=0) # 反归一化结果 predictions = self.scaler_h.inverse_transform(mean_pred_scaled) uncertainty = self.scaler_h.inverse_transform(std_pred_scaled) * 1.96 # 95%置信区间 actual_values = h_test test_time = self.test_df.index # 清除现有图表 self.ax.clear() # 计算合理的y轴范围 - 基于数据集中区域 # 获取实际值和预测值的中位数 median_val = np.median(actual_values) # 计算数据的波动范围(标准差) data_range = np.std(actual_values) * 4 # 4倍标准差覆盖大部分数据 # 设置y轴范围为中心值±数据波动范围 y_center = median_val y_half_range = max(data_range, 10) # 确保最小范围为20个单位 y_min_adjusted = y_center - y_half_range y_max_adjusted = y_center + y_half_range # 确保范围不为零 if y_max_adjusted - y_min_adjusted < 1: y_min_adjusted -= 5 y_max_adjusted += 5 # 绘制结果(带置信区间) self.ax.plot(test_time, actual_values, 'b-', label='真实值', linewidth=2) self.ax.plot(test_time, predictions, 'r--', label='预测均值', linewidth=2) self.ax.fill_between( test_time, (predictions - uncertainty).flatten(), (predictions + uncertainty).flatten(), color='orange', alpha=0.3, label='95%置信区间' ) # 设置自动调整的y轴范围 self.ax.set_ylim(y_min_adjusted, y_max_adjusted) self.ax.set_title('大坝渗流水位预测(PINNs with MC Dropout)') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位', rotation=0) self.ax.legend(loc='best') # 自动选择最佳位置 # 优化时间轴刻度 self.ax.xaxis.set_major_locator(mdates.YearLocator()) self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y')) self.ax.xaxis.set_minor_locator(mdates.MonthLocator(interval=2)) self.ax.grid(which='minor', axis='x', linestyle=':', color='gray', alpha=0.3) self.ax.grid(which='major', axis='y', linestyle='-', color='lightgray', alpha=0.5) self.ax.tick_params(axis='x', which='major', rotation=0, labelsize=9) self.ax.tick_params(axis='x', which='minor', length=2) # 计算评估指标(排除第一个点) eval_actual = actual_values[1:].flatten() eval_pred = predictions[1:].flatten() self.evaluation_metrics = self.calculate_metrics(eval_actual, eval_pred) # 添加不确定性指标 avg_uncertainty = np.mean(uncertainty) max_uncertainty = np.max(uncertainty) self.evaluation_metrics['Avg Uncertainty'] = avg_uncertainty self.evaluation_metrics['Max Uncertainty'] = max_uncertainty metrics_text = ( f"MSE: {self.evaluation_metrics['MSE']:.4f} | " f"RMSE: {self.evaluation_metrics['RMSE']:.4f} | " f"MAE: {self.evaluation_metrics['MAE']:.4f} | " f"MAPE: {self.evaluation_metrics['MAPE']:.2f}% | " f"R²: {self.evaluation_metrics['R2']:.4f}\n" f"平均不确定性: {avg_uncertainty:.4f} | 最大不确定性: {max_uncertainty:.4f}" ) self.metrics_var.set(metrics_text) # 在图表上添加指标 self.ax.text( 0.5, 1.05, metrics_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) params_text = ( f"物理参数: k1={self.learned_params['k1']:.4f}, " f"k2={self.learned_params['k2']:.4f}, " f"alpha={self.learned_params['alpha']:.4f}, " f"beta={self.learned_params['beta']:.4f} | " f"Teacher Forcing概率: {teacher_forcing_prob}" ) self.ax.text( 0.5, 1.12, params_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) # 调整布局 plt.tight_layout(pad=2.0) # 更新画布 self.canvas.draw() # 保存预测结果 self.predictions = predictions self.uncertainty = uncertainty self.actual_values = actual_values self.test_time = test_time self.mc_predictions = mc_predictions_scaled self.status_var.set(f"预测完成(MC Dropout采样{mc_iterations}次)") except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") import traceback traceback.print_exc() def save_results(self): """保存预测结果和训练历史数据""" if not hasattr(self, 'predictions') or not hasattr(self, 'train_history'): messagebox.showwarning("警告", "请先生成预测结果并完成训练") return # 选择保存路径 save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx"), ("所有文件", "*.*")], title="保存结果" ) if not save_path: return try: # 1. 创建预测结果DataFrame result_df = pd.DataFrame({ '时间': self.test_time, '实际水位': self.actual_values.flatten(), '预测水位': self.predictions.flatten() }) # 2. 创建评估指标DataFrame metrics_df = pd.DataFrame([self.evaluation_metrics]) # 3. 创建训练历史DataFrame history_data = { '轮次': list(range(1, len(self.train_history['train_data_loss']) + 1)), '训练数据损失': self.train_history['train_data_loss'], '物理损失': self.train_history['physics_loss'], '验证数据损失': self.train_history['valid_data_loss'] } # 添加训练集指标 for metric in ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2']: history_data[f'训练集_{metric}'] = [item[metric] for item in self.train_history['train_metrics']] # 添加验证集指标 for metric in ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2']: history_data[f'验证集_{metric}'] = [item[metric] for item in self.train_history['valid_metrics']] history_df = pd.DataFrame(history_data) # 保存到Excel with pd.ExcelWriter(save_path) as writer: result_df.to_excel(writer, sheet_name='预测结果', index=False) metrics_df.to_excel(writer, sheet_name='评估指标', index=False) history_df.to_excel(writer, sheet_name='训练历史', index=False) # 保存图表 chart_path = os.path.splitext(save_path)[0] + "_chart.png" self.fig.savefig(chart_path, dpi=300) # 保存损失曲线图 loss_path = os.path.splitext(save_path)[0] + "_loss.png" self.loss_fig.savefig(loss_path, dpi=300) self.status_var.set(f"结果已保存至: {os.path.basename(save_path)}") messagebox.showinfo("保存成功", f"预测结果和图表已保存至:\n" f"主文件: {save_path}\n" f"预测图表: {chart_path}\n" f"损失曲线: {loss_path}") except Exception as e: messagebox.showerror("保存错误", f"保存结果失败:\n{str(e)}") def reset(self): # 重置归一化器 self.scaler_t = MinMaxScaler(feature_range=(0, 1)) self.scaler_h = MinMaxScaler(feature_range=(0, 1)) self.scaler_dt = MinMaxScaler(feature_range=(0, 1)) """重置程序状态""" self.train_df = None self.test_df = None self.model = None self.train_file_var.set("") self.test_file_var.set("") # 清除训练历史 if hasattr(self, 'train_history'): del self.train_history # 清除图表 if hasattr(self, 'ax'): self.ax.clear() if hasattr(self, 'loss_ax'): self.loss_ax.clear() # 重绘画布 if hasattr(self, 'canvas'): self.canvas.draw() if hasattr(self, 'loss_canvas'): self.loss_canvas.draw() # 清除状态 self.status_var.set("已重置,请选择新数据") # 清除预测结果 if hasattr(self, 'predictions'): del self.predictions # 清除指标文本 if hasattr(self, 'metrics_var'): self.metrics_var.set("") messagebox.showinfo("重置", "程序已重置,可以开始新的分析") if __name__ == "__main__": root = tk.Tk() app = DamSeepageModel(root) root.mainloop() 帮我改进模型1.将时间归一化部分修改为计算总时间跨度包含测试集,使用相对时间比例 2.改进水位归一化,如果测试集出现训练时没见过的高/低水位,反归一化会失真,帮我解决 3.时间步长问题,全程的采样频率是动态变化的,帮我优化dt
08-03
train: New cache created: D:\water-bottle\ultralytics-main\datasets\train\labels.cache WARNING ⚠️ No images found in D:\water-bottle\ultralytics-main\datasets\train\labels.cache, training may not work correctly. See https://docs.ultraly tics.com/datasets for dataset formatting guidance. Traceback (most recent call last): File "d:\water-bottle\ultralytics-main\train.py", line 5, in <module> model.train( File "d:\water-bottle\ultralytics-main\ultralytics\engine\model.py", line 810, in train self.trainer.train() File "d:\water-bottle\ultralytics-main\ultralytics\engine\trainer.py", line 208, in train self._do_train(world_size) File "d:\water-bottle\ultralytics-main\ultralytics\engine\trainer.py", line 323, in _do_train self._setup_train(world_size) File "d:\water-bottle\ultralytics-main\ultralytics\engine\trainer.py", line 287, in _setup_train self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=LOCAL_RANK, mode="train") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "d:\water-bottle\ultralytics-main\ultralytics\models\yolo\detect\train.py", line 49, in get_dataloader dataset = self.build_dataset(dataset_path, mode, batch_size) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "d:\water-bottle\ultralytics-main\ultralytics\models\yolo\detect\train.py", line 43, in build_dataset return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "d:\water-bottle\ultralytics-main\ultralytics\data\build.py", line 99, in build_yolo_dataset return dataset( ^^^^^^^^ File "d:\water-bottle\ultralytics-main\ultralytics\data\dataset.py", line 64, in __init__ super().__init__(*args, **kwargs) File "d:\water-bottle\ultralytics-main\ultralytics\data\base.py", line 74, in __init__ self.labels = self.get_labels() ^^^^^^^^^^^^^^^^^ File "d:\water-bottle\ultralytics-main\ultralytics\data\dataset.py", line 161, in get_labels len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ValueError: not enough values to unpack (expected 3, got 0)怎么处理
最新发布
08-10
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值