单源最短路径( Dijkstra算法)JAVA实现

本文介绍了单源最短路径问题及其最优子结构性质,并详细解释了Dijkstra算法的工作原理和实现过程。通过一个具体例子展示了如何使用Dijkstra算法找到图中从一个顶点到其他所有顶点的最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

Dijkstra提出按各顶点与源点v间的路径长度的递增次序,生成到各顶点的最短路径的算法。既先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点v 到其它各顶点的最短路径全部求出为止。

public class Dijkstra {
static int M=10000;(此路不通)
public static void main(String[] args) {
// TODO Auto-generated method stub
int[][] weight1 = {//邻接矩阵
{0,3,2000,7,M},
{3,0,4,2,M},
{M,4,0,5,4},
{7,2,5,0,6},
{M,M,4,6,0}
};


int[][] weight2 = {
{0,10,M,30,100},
{M,0,50,M,M},
{M,M,0,M,10},
{M,M,20,0,60},
{M,M,M,M,0}
};
int start=0;
int[] shortPath = Dijsktra(weight2,start);

for(int i = 0;i < shortPath.length;i++)
System.out.println("从"+start+"出发到"+i+"的最短距离为:"+shortPath[i]);

}


public static int[] Dijsktra(int[][] weight,int start){
//接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
//返回一个int[] 数组,表示从start到它的最短路径长度
int n = weight.length; //顶点个数
int[] shortPath = new int[n]; //存放从start到其他各点的最短路径
String[] path=new String[n]; //存放从start到其他各点的最短路径的字符串表示
for(int i=0;i<n;i++)
path[i]=new String(start+"-->"+i);
int[] visited = new int[n]; //标记当前该顶点的最短路径是否已经求出,1表示已求出

//初始化,第一个顶点求出
shortPath[start] = 0;
visited[start] = 1;

for(int count = 1;count <= n - 1;count++) //要加入n-1个顶点
{

int k = -1; //选出一个距离初始顶点start最近的未标记顶点
int dmin = Integer.MAX_VALUE;
for(int i = 0;i < n;i++)
{
if(visited[i] == 0 && weight[start][i] < dmin)
{
dmin = weight[start][i];

k = i;
}

}
// System.out.println("k="+k);

//将新选出的顶点标记为已求出最短路径,且到start的最短路径就是dmin
shortPath[k] = dmin;

visited[k] = 1;

//以k为中间点,修正从start到未访问各点的距离
for(int i = 0;i < n;i++)
{
if(visited[i] == 0 && weight[start][k] + weight[k][i] < weight[start][i]){
weight[start][i] = weight[start][k] + weight[k][i];

path[i]=path[k]+"-->"+i;

}

}

}
for(int i=0;i<n;i++)
System.out.println("从"+start+"出发到"+i+"的最短路径为:"+path[i]);
System.out.println("=====================================");

return shortPath;
}
}



对于下图:
[img]http://dl.iteye.com/upload/attachment/0073/8325/d4cd7e7c-8660-3788-8835-0aafa2e430b0.png[/img]

运行结果:
从0出发到0的最短路径为:0-->0
从0出发到1的最短路径为:0-->1
从0出发到2的最短路径为:0-->3-->2
从0出发到3的最短路径为:0-->3
从0出发到4的最短路径为:0-->3-->2-->4
=====================================
从0出 发到0的最短距离为:0
从0出 发到1的最短距离为:10
从0出 发到2的最短距离为:50
从0出 发到3的最短距离为:30
从0出 发到4的最短距离为:60

下载源码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值