一个AI前辈的BLOG--http://www.aisharing.com

博客分享了一个链接http://www.aisharing.com ,但未提供该链接更多相关信息技术方面的关键信息。

 

http://www.aisharing.com

本项目通过STM32F103C8T6单片机最小系统,连接正点原子ESP8266 WiFi模块,将模块设置为Station模式,并与电脑连接到同一个WiFi网络。随后,STM32F103C8T6单片机将数据发送到电脑所在的IP地址。 功能概述 硬件连接: STM32F103C8T6单片机与正点原子ESP8266 WiFi模块通过串口连接。 ESP8266模块通过WiFi连接到电脑所在的WiFi网络。 软件配置: 在STM32F103C8T6上配置串口通信,用于与ESP8266模块进行数据交互。 通过AT指令将ESP8266模块设置为Station模式,并连接到指定的WiFi网络。 配置STM32F103C8T6单片机,使其能够通过ESP8266模块向电脑发送数据。 数据发送: STM32F103C8T6单片机通过串口向ESP8266模块发送数据。 ESP8266模块将接收到的数据通过WiFi发送到电脑所在的IP地址。 使用说明 硬件准备: 准备STM32F103C8T6单片机最小系统板。 准备正点原子ESP8266 WiFi模块。 将STM32F103C8T6单片机与ESP8266模块通过串口连接。 软件准备: 下载并安装STM32开发环境(如Keil、STM32CubeIDE等)。 下载本项目提供的源代码,并导入到开发环境中。 配置与编译: 根据实际需求配置WiFi网络名称和密码。 配置电脑的IP地址,确保与ESP8266模块在同一网络中。 编译并下载程序到STM32F103C8T6单片机。 运行与测试: 将STM32F103C8T6单片机与ESP8266模块上电。 在电脑上打开网络调试工具(如Wireshark、网络调试助手等),监听指定端口。 观察电脑是否接收到来自STM32F103C8T6单片机发送的数据。
在电子测量技术中,示波装置扮演着观测电信号形态的关键角色。然而,市售标准示波器往往定价较高,使得资源有限的入门者或教学环境难以配备。为此,可采用基于51系列微控制器的简易示波方案进行替代。该方案虽在性能上不及专业设备,但已能满足基础教学与常规电路检测的需求。下文将系统阐述该装置的主要构成模块及其运行机制。 本装置以51系列单片机作为中央处理核心,承担信号数据的运算与管理任务。该单片机属于8位微控制器家族,在嵌入式应用领域使用广泛。其控制程序可采用C语言进行开发,得益于C语言在嵌入式编程中的高效性与适应性,它成为实现该功能的合适选择。 波形显示部分采用了由ST7565控制器驱动的128×64点阵液晶模块。ST7565是一款图形液晶驱动芯片,支持多种像素规格的显示输出;此处所指的12864即表示屏幕具有128列、64行的像素阵列。该屏幕能以图形方式实时绘制信号曲线,从而提供直观的观测界面。 在模拟至数字信号转换环节,系统集成了TLC0820型模数转换芯片。该芯片具备8位分辨率及双输入通道,最高采样速率可达每秒10万次。这样的转换速度对于捕获快速变动的信号波形具有重要意义。 实现该示波装置需综合运用嵌入式软硬件技术。开发者需掌握51单片机的指令系统与编程方法,熟悉ST7565控制器的显示驱动配置,并能对TLC0820芯片进行正确的采样编程。此外,还需设计相应的模拟前端电路,包括信号调理、放大与滤波等部分,以确保输入ADC的信号质量满足测量要求。 通过C语言编写的控制程序,可完成系统各模块的初始化、数据采集、数值处理以及图形化显示等完整流程。开发过程中需借助调试工具对代码进行验证,保证程序执行的正确性与稳定性。 应当指出,受限于51系列单片机的运算能力与资源,该自制装置的功能相对基础,例如难以实现多通道同步测量、高级触发模式或高容量波形存储等复杂特性。尽管如此,对于绝大多数基础电子实验与教学演示而言,其性能已足够适用。 综上所述,结合51单片机、ST7565液晶控制器与TLC0820转换芯片,可以构建出一套成本低廉、结构清晰的简易示波系统。该装置不仅可作为电子爱好者、在校学生及教师的有益实践平台,帮助理解示波测量的基本原理,还能通过动手组装与调试过程,深化对电路分析与嵌入式系统设计的认识。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 配置 Conda 添加清华大学镜像源 为了通过 `conda config` 命令添加清华大学镜像的多个 channels,可以按照以下方法操作: #### 1. 清华大学镜像的主要地址 清华大学提供了 Anaconda 的镜像服务,其主要地址为 `https://mirrors.tuna.tsinghua.edu.cn/anaconda/`。基于此地址,可以通过 `conda config` 命令依次添加所需的 channels。 以下是具体的操作命令列表: ```bash # 添加 pkgs/free channel conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ # 添加 pkgs/main channel conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ # 添加 conda-forge channel conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ # 添加 fastai channel conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/fastai/ # 添加 pytorch channel conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ # 添加 bioconda channel conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/ ``` 以上每条命令都会向用户的 `.condarc` 文件中追加对应的 channel 地址[^1]。 #### 2. 设置显示 channel URL 为了让每次安装包时都能看到具体的 source address,建议设置如下选项: ```bash conda config --set show_channel_urls yes ``` 这一步会确保在后续使用过程中能够清晰了解所使用的镜像源来自哪个 channel。 #### 3. 创建并激活新的 Conda 环境(可选) 如果需要在一个全新的环境中测试这些配置效果,也可以先创建一个新的环境再执行上述步骤: ```bash # 创建名为 test_env 的新环境,并指定 Python 版本 conda create -n test_env python=3.8 # 激活该环境 conda activate test_env ``` 随后即可在此环境下完成 mirror 的配置工作[^3]。 #### 注意事项 - 如果 Miniconda 或 Anaconda 安装路径不在默认位置,则可能还需要手动调整 PATH 变量以确保命令行工具能找到相关脚本文件[^4]。 - 上述所有更改均会影响全局范围内的 Conda 行为;若仅希望针对特定项目应用特殊 settings,则应考虑利用独立 environments 来隔离影响。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值