Lucene Scoring 评分机制

本文深入探讨了Lucene的评分机制,介绍了Lucene如何通过向量空间模型和布尔模型组合来评估文档的相关性。详细解释了评分公式及其各项含义,并概述了评分过程中涉及的核心类。
版权信息:可以任意转载, 转载时请务必以超链接形式标明文章原文出处, 即下面的声明.

原文出处:http://blog.chenlb.com/2009/08/lucene-scoring-architecture.html

Lucene 评分体系/机制(lucene scoring)是 Lucene 出名的一核心部分。它对用户来说隐藏了很多复杂的细节,致使用户可以简单地使用 lucene。但个人觉得:如果要根据自己的应用调节评分(或结构排序),十分有必须深入了解 lucene 的评分机制。

Lucene scoring 组合使用了 信息检索的向量空间模型 和 布尔模型 。

首先来看下 lucene 的评分公式(在 Similarity 类里的说明)

score(q,d) = coord(q,d) · queryNorm(q) · ∑ ( tf(t in d) · idf(t)2 · t.getBoost() · norm(t,d) )
t in q
其中:

tf(t in d) 关联到项频率,项频率是指 项 t 在 文档 d 中出现的次数 frequency。默认的实现是:
tf(t in d) = frequency½
idf(t) 关联到反转文档频率,文档频率指出现 项 t 的文档数 docFreq。docFreq 越少 idf 就越高(物以稀为贵),但在同一个查询下些值是相同的。默认实现:
idf(t) = 1 + log (
numDocs
–––––––––
docFreq+1 )
coord(q,d) 评分因子,是基于文档中出现查询项的个数。越多的查询项在一个文档中,说明些文档的匹配程序越高。默认是出现查询项的百分比。
queryNorm(q)查询的标准查询,使不同查询之间可以比较。此因子不影响文档的排序,因为所有有文档都会使用此因子。默认值:
queryNorm(q) = queryNorm(sumOfSquaredWeights) =
1
––––––––––––––
sumOfSquaredWeights½

每个查询项权重的平分方和(sumOfSquaredWeights)由 Weight 类完成。例如 BooleanQuery 地计算:

sumOfSquaredWeights = q.getBoost() 2 · ∑ ( idf(t) · t.getBoost() ) 2
t in q
t.getBoost()查询时期的 项 t 加权(如:java^1.2),或者由程序使用 setBoost()。
norm(t,d)压缩几个索引期间的加权和长度因子:
Document boost - 文档加权,在索引之前使用 doc.setBoost()
Field boost - 字段加权,也在索引之前调用 field.setBoost()
lengthNorm(field) - 由字段内的 Token 的个数来计算此值,字段越短,评分越高,在做索引的时候由 Similarity.lengthNorm 计算。
以上所有因子相乘得出 norm 值,如果文档中有相同的字段,它们的加权也会相乘:
norm(t,d) = doc.getBoost() · lengthNorm(field) · ∏ f.getBoost()
field f in d named as t
索引的时候,把 norm 值压缩(encode)成一个 byte 保存在索引中。搜索的时候再把索引中 norm 值解压(decode)成一个 float 值,这个 encode/decode 由 Similarity 提供。官方说:这个过程由于精度问题,以至不是可逆的,如:decode(encode(0.89)) = 0.75。

计算这个评分涉及到几个核心的类/接口:Similarity、Query、Weight、Scorer、Searcher,由它们或其子类来完成评分的计算。先来看下它们的类图:


lucene search score uml, 点击放大
搜索中,评分的过程:

创建一个查询对象 Query,传给 Searcher,具体来讲可能是 IndexSearcher。
Searcher 根据 Query 创建一个对应的 Weight(是 Query 的内部特征表示),接着 Weight 会创建对应的 Scorer。
Searcher 会创建 Hitcollector 并传到 Scorer,scorer 找到匹配的文档并计算评分,最后写到 Hitcollector 中。
Query、Weight、Scorer 三都关系十分密切,尤其是 Query 和 Weight。Weight 是计算查询权重和创建 Scorer 的。Query 为了可以重用把内部的特征抽象为 Weight,由子类去完成一些相关评分的计算。

任何 Searcher 依赖的状态都存储在 Weight 实现中,而不是在Query 中,这样可以重用 Query。

Weight 的生命周期(被使用):

Weight 由顶层的 Query 创建。Query.createWeight(Searcher),创建的 Weight 给 Searcher 去使用。
当用 Similarity.queryNorm(float) 来计算查询标准化因子(query normalization)的时候,Weight.sumOfSquaredWeights() 会被调用。
查询标准化因子(query normalization)会传给 Weight.normalize(float)计算,这个时候权重(weighting)计算完成。
创建一个 Scorer。
自定义评分的计算

可以实现一个 Similarity 换掉默认的。它仅限于 Scorer、Weight 计算好的因子值再加工。要想对评分有更强的控制力,可以实现一套 Query、Weight、Scorer。

Query 是用户信息需要的抽象
Weight 是 Query 的内部特性表示的抽象
Scorer 抽象公用的计算评分功能,提供计算评分和解说(explanation)评分的能力。
Query 子类实现的方法:

createWeight(Searcher searcher) -- Weight 是 Query 内部代表,所以每个 Query 都必实现一个 Weight,此方法就是生成一个Query对应的Weight对象。
rewrite(IndexReader reader) -- 重写查询为原始的查询,原始的查询有:TermQuery,BooleanQuery……
Weight 接口方法:

Weight#getQuery() -- 指出代表 Weight 的 Query。
Weight#getValue() -- Query 的权重,例如:TermQuery.TermWeight 的 value = idf^2 * boost * queryNorm
Weight#sumOfSquaredWeights() -- 各查询项的平方和,如,TermWeight 的 = (idf * boost)^2
Weight#normalize(float) -- 决定查询标准化的因子,查询标准化值可以在不同 Query 比较 score
Weight#scorer(IndexReader) -- 创建 Query 对应的评分器 Scorer,它的责任是给 Query 匹配到的文档评分。
Weight#explain(IndexReader, int) -- 给指定的文档详细解说评分值是怎么得来了。
Scorer 子类实现的方法:

Scorer#next() -- 预取匹配到的下一文档,有才返回 true。
Scorer#doc() -- 返回当前匹配到的文档id,它必须 next() 调用后才有效。
Scorer#score() -- 返回当前文档的评分,此值可以由应用程序以任何适当的方式给出,如 TermScorer 返回 tf * Weight.getValue() * fieldNorm
Scorer#skipTo(int) -- 跳到大于或等于 int 的匹配文档上。很多情况下,在结果集中 skipTo 比较循环更加快速高效。
Scorer#explain(int) -- 给出评分产生的细节。
要实现一套 Query、Weight、Scorer,最好还是看下 TermQuery、TermWeight、TermScorer。

当 Lucene 中没有想要的查询时(包括不同的评分细节),自定义Query 可能帮得上忙。

重要参考资料:

http://lucene.apache.org/java/2_4_1/scoring.html
http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/search/package-summary.html#scoring
http://lucene.apache.org/java/2_4_1/api/org/apache/lucene/search/Weight.html
Solr基于Lucene的全文搜索服务器。同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面,是一款非常优秀的全文搜索引擎 课程特点毕业后接触的第一个中间件就是Solr,在工作中用处广泛,为了便于大家快速掌握该技能,开始录制相关课程,该专栏特点如下:1.采用Solr最新版本视频录制,全网最新课程(Solr8.1于2019年5月16日发布)2.技能点全网最全,会结合工作经验,项目中用到的技能点都会有所涉及,更新章节比较全面3.适用范围广,从零基础到高级架构以及分布式集群都涵盖,适用初级、高级、项目实战等多个层次开发者4.多种维度辅助学习,采用独立solr粉丝群辅助教学,学员问题会及时得到解决,程序员突破圈 打卡制度,督促学员学习关注后再购买、 关注后再购买、 关注后再购买课程能得到什么1.快速学习到最新版本的全文检索技术,从视频、文章、圈子、粉丝交流等快速促进学习2.通过该技术,获得面试进阶指导3.结交人脉(庞大的粉丝群)..End初期学员100人,价格不会太高,也是为了帮助更多的开发者但是个人精力有限,所以限制条件如下1.求知欲强,有想向技术更深一层了解的2.乐于交流,喜欢探讨技术者3.学习惰性者慎入,购买后会督促大家学习,购买不是目的,学习到该技能才是该专栏的主要目的正式进入学习状态了吗,专栏群见。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值