PXA270-基于ARM9内核Processor外部NAND FLASH的控制实现

本文介绍了一种在ARM9内核处理器中控制外部NAND Flash的方法,通过特殊的硬件连线和软件控制实现对NAND Flash的操作,包括读、写及擦除等,并详细阐述了其实现原理及过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

于ARM9内核Processor外部NAND FLASH的控制实现
夏 涛

(上海交通大学微电子学院 上海 200030)

1 NAND FLASH

NAND写回速度快、芯片面积小,特别是大容量使其优势明显。页是NAND中的基本存贮单元,一页一般为512 B(也有2 kB每页的large page NAND FLASH),多个页面组成块。不同存储器内的块内页面数不尽相同,通常以16页或32页比较常见。块容量计算公式比较简单,就是页面容量与块内页面数的乘积。根据FLASH Memory容量大小,不同存储器中的块、页大小可能不同,块内页面数也不同。例如:8 MB存储器,页大小常为512 B、块大小为8 kB,块内页面数为16。而2 MB的存储器的页大小为256 B、块大小为4 kB,块内页面数也是16。NAND存储器由多个块串行排列组成。实际上,NAND型的FLASHMemory可认为是顺序读取的设备,他仅用8 b的I/O端口就可以存取按页为单位的数据。NAND在读和擦写文件、特别是连续的大文件时,速度相当快。

2 NAND FLASH与NOR FLASH比较

NOR的特点是可在芯片内执行,这样程序应该可以直接在FLASH内存内运行,不必再把代码读到系统RAM中。NOR的传输效率很高,但写入和读出速度较低。而NAND结构能提供极高的单元密度,并且写入和擦除的速度也很快,是高数据存储密度的最佳选择。

这两种结构性能上的异同主要为:NOR的读速度比NAND快;NAND的写入速度比NOR快很多;NAND的擦除速度远比NOR快;NAND的擦除单元更小,相应的擦除电路也更加简单;NAND的实际应用方式要比NOR复杂得多;NOR可以直接使用,并在上面直接运行代码,而NAND需要I/O接口,因此使用时需要驱动程序。

3 NAND FLASH在系统中的控制

在没有NAND FLASH硬件接口的环境中,通过软体控制CPU时序和硬件特殊接线方式实现仿真NANDFLASH接口,进而实现在嵌入式系统中脱离NANDFLASH专用硬件接口进行对NAND FLASH读、写、擦除等操作的实现方法。
本方法主要工作在以下两个方面:

软件方面:针对特殊硬件线路的软体设计和严格的CPU时序控制;

硬件方面:硬件的线路设计,利用NOR FLASH专用硬件接口控制NAND FLASH。

首先建立的开发平台如图1所示。

本平台使用Intel的PXA270 Processor,无内建NAND FLASH Controller,使用NOR FLASH Controller控制NAND FLASH,具体的线路连接方式如图2所示。

NAND FLASH的I/O0~I/07引脚用于对FLASH发送操作命令和收发数据,ALE用于指示FLASH当前数据为地址信息,CLE用于指示当前数据为操作命令信息,当两者都无效时,为数据信息。CE引脚用于FLASH片选。RE和WE分别为FLASH读、写控制,R/B指示FLASH命令是否已经完成。逭里选用的是CE don't care的NAND FLASH。

NAND FLASH的读写操作以page方式进行,一次读写均为一个page,erase方式以block方式进行。这种方式,使其读写速度大大提高。

在时序方面,以读操作为例,其时序如图3所示。

操作过程主要分为以下几个步骤:

(1)发送读操作命令

CE有效,CLE有效,WE有效,I/O0~I/O8上面数据为command代码数据。

(2)发送地址数据(需要读取的FLASH地址)

CE有效,ALE有效,WE有效,I/O0~I/O8上面为所需地址数据。由于地址数据较多,所以需要分几次依次发送。每次发送都需要产生WE信号以将其写入NANDFLASH芯片。

(3)等待R/B信号,最后读出数据

在最后一个地址数据写入FLASH之后,R/B信号即变低。等待芯片完成整个page数据读取之后,R/B信号变高。此时,CE有效,ALE,CLE均拉低,依次产生RE信号,从I/O0~I/O8读取出所需数据。

对于写操作和擦除操作,其基本原理相同,只是信号顺序略有改变,就不再赘述。

由于使用了CPU地址线A1,A2连接CLE,ALE引脚,对CPU低2、3位地址的读写操作就意味着对NANDFLASH进行读写命令/数据操作。如果此程序工作在OS
上的application层的话,MMU已经屏蔽程序对底层硬件
的直接访问,所以需要对MMU进行设定,为NANDFLASH开辟一块。Memory映像区域,这样就可以通过OS对底层的NAND FLASH进行操作。以该系统为例,使用CPU的CS1引脚控制NAND FLASH的CE信号,先将其映像为0x24000000地址,此时,对0x24000000地址读写即对NAND FLASH芯片进行数据读写,而对Ox24000002地址写数据,使CPU的A1地址引脚为高,即对NAND FLASH发送command命令,同样,对0x24000004地址写数据,即对NAND FLASH发送address数据。

在对NAND FLASH发送命令/数据之后,由于程序运行速度比FLASH芯片快很多,需要在每一次操作之后插入若干等待周期,并利用CPU的GPIO检测芯片R/B信号。直至芯片完成本次操作再进行下一步操作。

需要注意的是,在对FLASH发送命令数据过程中的等待,没有反馈信号可以检测,只能通过反复调试确定其所需等待时间。

在设计中采用CPU的CS1信号对NAND FLASH进行CE(片选)控制。此处不能采用CPU的GPIO进行控制,因为在嵌入式设备的ARM CPU中,CPU本身采用了指令、数据自动预读的高速缓存技术和流水线技术。因此,当程序在NOR FLASH里面直接运行的时候(目前绝大多数嵌入式系统采用的方式),在运行任何两段相连的代码中间,CPU都有可能对NOR FLASH进行指令或数据的预读操作,从而产生大量的RE,OE信号和地址信号。如果使用GPIO控制NAND FLASH的CE信号则无法避免这种影响。CPU的CS1信号是由CPU内部自动产生,因此在CPU预读期间,CS1信号可以有效屏蔽NANDFLASH芯片。并且,由于NAND FLASH芯片支持CEdon't care模式,在CE无效的情况下,芯片本身的工作状态并不会被干扰,由此保证了NOR FLASH和NANDFLASH在同一CPU界面中互不干扰的稳定运行。对于CS1信号的宽度等参数,也需要在实验中进行调节,才能保证整个系统快速稳定的运行。

4 NAND FLASH在系统中的读写速度

经过测试在该系统平台中,OS为Palm OS 5.4;CPU使用PXA270 312 MHz;SDRAM使用Samsung的16 bdata width HYB25L256160AF-7.5@104 MHz;NANDFLASH选用Samsung 128 MB 8 b I/O NAND FLASHK9F1G08U0A达到在文件系统下面的读/写的速度为3 MB/s,擦除的速度为65 MB/s,在手持式设备中运用性能已经够了。

pxa270_LED,驱动,测试程序 #include <stdio.h> #include <fcntl.h> #define MOTOR_Forward 0x1 #define MOTOR_Reverse 0x2 #define MOTOR_SetSpeed 0x3 #define MOTOR_GetSpeed 0x4 #define MOTOR_STOP 0x5 #define DEC_Forward 0x6 #define DEC_Reverse 0x7 #define stmotor_dev "/dev/xsb_edr_step" int main_menu(void){ int key; printf("\n\n"); printf("********** MOTOR test menu **********\n"); printf("* 1. MOTOR Forward *\n"); printf("* 2. MOTOR Reverse *\n"); printf("* 3. MOTOR Set Speed *\n"); printf("* 4. MOTOR Get Speed *\n"); printf("* 5. MOTOR STOP *\n"); printf("* 6. DEC Forward *\n"); printf("* 7. DEC Reverse *\n"); //printf("* 8. *\n"); //printf("* 9. *\n"); printf("* 0. Exit Program *\n"); printf("********************************\n"); printf("\n\n"); printf("select the command number : "); scanf("%d",&key); return key; } void wait_for(int count) { int i,j; for(i=0; i<count; i++) for(j=0; j<1000; j++); } main(int ac, char *av[]){ int key, dev; int speed=600; int i=0; int count; int j=5; dev = open(stmotor_dev, O_RDWR ); if ( dev < 0) { fprintf(stderr, "cannot open ST_MOTOR (%d)", dev); exit(2); } /* while((key = main_menu()) != 0){ switch(key){ case 1: printf("\t MOTOR Forward \n"); ioctl(dev, MOTOR_Forward, 0); break; case 2: printf("\t MOTOR Reverse \n"); ioctl(dev, MOTOR_Reverse, 0); break; case 3: printf("\t MOTOR Speed Up \n"); ioctl(dev, MOTOR_SetSpeed, 0); break; case 4: printf("\t MOTOR Speed Down \n"); ioctl(dev, MOTOR_GetSpeed, 0); break; case 5: printf("\t MOTOR Stop \n"); ioctl(dev, MOTOR_STOP, 0); break; case 6: printf("\t DEC Forward \n"); ioctl(dev, DEC_Forward, 0); break; case 7: printf("\t DEC Reverse \n"); ioctl(dev, DEC_Reverse, 0); break; default: printf("\t Unknow command... \n"); //close(dev); printf("Close program\n"); exit(2); break; } } */ while(1) { count=100; for(; count>0; count--) ioctl(dev, MOTOR_Forward, speed); wait_for(100); count=100; for(; count>0; count--) ioctl(dev, MOTOR_Reverse, speed); ioctl(dev, DEC_Reverse, speed); wait_for(150); count=100; for(; count>0; count--) ioctl(dev, MOTOR_Reverse, speed); wait_for(100); count=100; for(; count>0; count--); ioctl(dev, DEC_Forward, speed); wait_for(150); i++; speed += 10*i; if (speed>1600) {speed=800; i=0;} } ioctl(dev,5,0); } /* EOF */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值