James Padolsey :Partial loop “unrolling”

本文探讨了JavaScript中通过使用“展开”循环来提升性能的方法。介绍了传统循环与展开循环的区别,并提供了一种预编译部分展开循环函数的方法,该方法根据数组长度的最高因数选择最优的循环函数。

 

Ps:本人不甚解,这样做的意义。

Posted: 13 Nov 2009 01:31 AM PST

In Thomas Fuchs’ latest JavaScript performance presentation he talks about the speed gains that can be experienced by using “unrolled” loops.

A conventional loop:

for (var i = 0; i < 10; ++i) {
    doFoo(i);
}

The “unrolled” version of that loop:

var i = 0;
doFoo(i++); doFoo(i++); doFoo(i++); doFoo(i++); doFoo(i++);
doFoo(i++); doFoo(i++); doFoo(i++); doFoo(i++); doFoo(i++);

A partially unrolled version:

for (var i = 0; i < 10; ) {
    doFoo(i++);
    doFoo(i++);
    doFoo(i++);
    doFoo(i++);
    doFoo(i++);
}

Interestingly, speed gains can be experienced dependent on the loop size, albeit marginal at best. I thought about ways to build this into a clever forEach function and came up with something that ‘pre-compiles’ functions containing partially unrolled loops. Have a look:

var forEach = (function() {
 
    var fns = [],
        callers = "true",
        numberFn = 10,
        i = 1;
 
    for ( ; i <= numberFn; ++i ) {
        callers += "&&f(a[++i])!==false";
        fns[i] = new Function("a", "f", "l", "var i=0;while (i<l) {"+callers+"}");
    }
 
    return function( array, fn ) {
 
        var len = array.length,
            n = numberFn, i;
 
        while (i = n--) {
            if ( len % i === 0 ) {
                return fns[i](array, fn, len);
            }
        }
 
    };
 
})();

This function will run one of 10 ‘pre-compiled’ functions on the passed array, dependent on the highest factor of the array’s length. I’m only creating 10 different functions in this example, you could create more.

If you were to pass an array with a length of 14, then fns[7] would be used, since 7 is the highest available factor (the highest number below 10 that 14 can be divided by, to gain a whole number). fns[7] looks something like this:

function anonymous(a, f, l) {
    var i = 0;
    while (i < l) {
        true &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false;
    }
}

The !== false part is used to create the effect of loop-breaking. Notice that the success of this boolean expression is depended upon to continue the chain of expressions (a && b && c)

I’ve only tested it briefly, and to be honest, there doesn’t seem to be a notable benefit. In IE, I can see a bit of improvement over the conventional forEach implementation but only if I’m using arrays with 1000+ lengths. I think this would only be useful in situations where you absolutely have to squeeze every inch of potential performance out of your app. Anyway, it’s still pretty interesting, I wonder what other fancy things can be created by using pre-compiled functions.

 

 

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值