James Padolsey :Partial loop “unrolling”

本文探讨了JavaScript中通过使用“展开”循环来提升性能的方法。介绍了传统循环与展开循环的区别,并提供了一种预编译部分展开循环函数的方法,该方法根据数组长度的最高因数选择最优的循环函数。

 

Ps:本人不甚解,这样做的意义。

Posted: 13 Nov 2009 01:31 AM PST

In Thomas Fuchs’ latest JavaScript performance presentation he talks about the speed gains that can be experienced by using “unrolled” loops.

A conventional loop:

for (var i = 0; i < 10; ++i) {
    doFoo(i);
}

The “unrolled” version of that loop:

var i = 0;
doFoo(i++); doFoo(i++); doFoo(i++); doFoo(i++); doFoo(i++);
doFoo(i++); doFoo(i++); doFoo(i++); doFoo(i++); doFoo(i++);

A partially unrolled version:

for (var i = 0; i < 10; ) {
    doFoo(i++);
    doFoo(i++);
    doFoo(i++);
    doFoo(i++);
    doFoo(i++);
}

Interestingly, speed gains can be experienced dependent on the loop size, albeit marginal at best. I thought about ways to build this into a clever forEach function and came up with something that ‘pre-compiles’ functions containing partially unrolled loops. Have a look:

var forEach = (function() {
 
    var fns = [],
        callers = "true",
        numberFn = 10,
        i = 1;
 
    for ( ; i <= numberFn; ++i ) {
        callers += "&&f(a[++i])!==false";
        fns[i] = new Function("a", "f", "l", "var i=0;while (i<l) {"+callers+"}");
    }
 
    return function( array, fn ) {
 
        var len = array.length,
            n = numberFn, i;
 
        while (i = n--) {
            if ( len % i === 0 ) {
                return fns[i](array, fn, len);
            }
        }
 
    };
 
})();

This function will run one of 10 ‘pre-compiled’ functions on the passed array, dependent on the highest factor of the array’s length. I’m only creating 10 different functions in this example, you could create more.

If you were to pass an array with a length of 14, then fns[7] would be used, since 7 is the highest available factor (the highest number below 10 that 14 can be divided by, to gain a whole number). fns[7] looks something like this:

function anonymous(a, f, l) {
    var i = 0;
    while (i < l) {
        true &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false &&
            f(a[++i]) !== false;
    }
}

The !== false part is used to create the effect of loop-breaking. Notice that the success of this boolean expression is depended upon to continue the chain of expressions (a && b && c)

I’ve only tested it briefly, and to be honest, there doesn’t seem to be a notable benefit. In IE, I can see a bit of improvement over the conventional forEach implementation but only if I’m using arrays with 1000+ lengths. I think this would only be useful in situations where you absolutely have to squeeze every inch of potential performance out of your app. Anyway, it’s still pretty interesting, I wonder what other fancy things can be created by using pre-compiled functions.

 

 

内容概要:本文档介绍了基于3D FDTD(时域有限差分)方法在MATLAB平台上对微带线馈电的矩形天线进行仿真分析的技术方案,重点在于模拟超MATLAB基于3D FDTD的微带线馈矩形天线分析[用于模拟超宽带脉冲通过线馈矩形天线的传播,以计算微带结构的回波损耗参数]宽带脉冲信号通过天线结构的传播过程,并计算微带结构的回波损耗参数(S11),以评估天线的匹配性能和辐射特性。该方法通过建立三维电磁场模型,精确求解麦克斯韦方程组,适用于高频电磁仿真,能够有效分析天线在宽频带内的响应特性。文档还提及该资源属于一个涵盖多个科研方向的综合性MATLAB仿真资源包,涉及通信、信号处理、电力系统、机器学习等多个领域。; 适合人群:具备电磁场与微波技术基础知识,熟悉MATLAB编程及数值仿真的高校研究生、科研人员及通信工程领域技术人员。; 使用场景及目标:① 掌握3D FDTD方法在天线仿真中的具体实现流程;② 分析微带天线的回波损耗特性,优化天线设计参数以提升宽带匹配性能;③ 学习复杂电磁问题的数值建模与仿真技巧,拓展在射频与无线通信领域的研究能力。; 阅读建议:建议读者结合电磁理论基础,仔细理解FDTD算法的离散化过程和边界条件设置,运行并调试提供的MATLAB代码,通过调整天线几何尺寸和材料参数观察回波损耗曲线的变化,从而深入掌握仿真原理与工程应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值