To the Max(DP)

本文介绍了一种通过动态规划解决最大子矩阵和问题的方法,包括输入格式、输出要求及详细算法步骤。
To the Max
Time Limit: 1000MS  Memory Limit: 10000K
Total Submissions: 40625  Accepted: 21525

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
As an example, the maximal sub-rectangle of the array: 

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
is in the lower left corner: 

9 2 
-4 1 
-1 8 
and has a sum of 15. 

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 
9 2 -6 2
-4 1 -4  1 
-1 8  0 -2

Sample Output

15

 

      题意:

      给出 N(1 ~ 100),代表有一个 N X N 的矩阵,后给出这个 N X N 的矩阵,输出这个矩阵的最大子矩阵和。

 

      思路:

      DP。最大子段和是 dp [ i ] = max { dp [ i - 1 ] + num [ i ], num[ i ] },dp [ i ] 代表到 i 为止最大的子段和。

      对于矩阵的话,枚举行的首尾位置,后把列浓缩一个总和,走一遍最大字段和,同时比较出最大值即可。

 

       AC:

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int INF = -100000000;
int num[105][105], sum[105][105];
int dp[105], ans[105];
int n;

int solve() {
    memset(dp, 0, sizeof(dp));

    int Max = INF;
    for (int i = 1; i <= n; ++i) {
        dp[i] = max(ans[i], dp[i - 1] + ans[i]);
        Max = max(Max, dp[i]);
    }

    return Max;
}

int main() {

    scanf("%d", &n);
    memset(sum, 0, sizeof(sum));
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            scanf("%d", &num[i][j]);
            sum[i][j] = sum[i - 1][j] + num[i][j];
        }
    }

    int Max = INF;
    for (int i = 1; i <= n; ++i) {
        for (int j = i; j <= n; ++j) {

            for (int k = 1; k <= n; ++k) {
                ans[k] = sum[j][k] - sum[i - 1][k];
            }

            Max = max(Max, solve());
        }
    }

    printf("%d\n", Max);

    return 0;
}

 

 

EDID and DPCD Access Handling by SST-only Mode Branch Devices Upon an EDID read by the DP Source device, a Branch device must reply with the EDID of the downstream DP Sink device. The DP Repeater must update the MAX_LINK_RATE and MAX_LANE_COUNT register (DPCD Addresses 00001h and 00002h, respectively) values to those of the downstream device’s DPRX when the following two conditions are met: • DP Repeater is incapable of changing the link rate and lane count from the upstream link to the downstream link • MAX_LINK_RATE and MAX_LANE_COUNT register values of the downstream device’s DPRX are smaller than those of the DP Repeater’s DPRX In case the DP Repeater is capable of setting the link rate and lane count of the DFP independent of those of the upstream-facing port (UFP), and the downstream device is a DP Sink device, the DP Branch device does not need to update the Receiver Capability field registers (DPCD Addresses 00000h through 000FFh; see Table 2-155). The description of the following two cases explains the rationale behind the above. • Case A – Maximum link bandwidth of the DP Branch device’s DPRX is greater than or equal to that of the downstream DP Sink device’s DPRX The DP Sink device is required to have the maximum link bandwidth that covers all the video timing formats that are declared in its EDID. As the DP Source device selects the video timing format from those listed in the EDID, the maximum link bandwidth of the DP Sink device’s DPRX does not gate the transmission of the video stream. • Case B – Maximum link bandwidth of the DP Branch device’s DPRX is less than or equal to that of the downstream DP Sink device’s DPRX The DP Source device is required to select the video timing format whose stream bandwidth fits within the maximum link bandwidth of the DP Branch device’s DPRX In case the DP Repeater is capable of setting the link rate and lane count of the DFP independent of those of the UFP, but its downstream device is a DP-to-legacy downstream devic
04-01
【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制实现有限时间内的共识,并提供了相应的Matlab代码实现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程实用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和实现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值