Wow! Such Sequence!
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 823 Accepted Submission(s): 239
After some research, Doge found that the box is maintaining a sequence an of n numbers internally, initially all numbers are zero, and there are THREE "operations":
1.Add d to the k-th number of the sequence.
2.Query the sum of ai where l ≤ i ≤ r.
3.Change ai to the nearest Fibonacci number, where l ≤ i ≤ r.
4.Play sound "Chee-rio!", a bit useless.
Let F0 = 1,F1 = 1,Fibonacci number Fn is defined as Fn = Fn - 1 + Fn - 2 for n ≥ 2.
Nearest Fibonacci number of number x means the smallest Fn where |Fn - x| is also smallest.
Doge doesn't believe the machine could respond each request in less than 10ms. Help Doge figure out the reason.
For each test case, there will be one line containing two integers n, m.
Next m lines, each line indicates a query:
1 k d - "add"
2 l r - "query sum"
3 l r - "change to nearest Fibonacci"
1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, |d| < 231, all queries will be valid.
题意:
给出 n(1 ~ 100000),m (1 ~ 100000) ,代表存在一个初始化为 0 ,数量为 n 的数列,后给出 m 个操作。
1 a b,代表将数列中第 k 个数增加 b( -2 ^ 31 <= b <= 2 ^ 31);
2 a b,代表输出数列 a 到 b 的总和;
3 a b,代表将数列 l 到 r 区间的数更改成最近的斐波那契数。
输出所有 2 操作的结果。
思路:
线段树。想预处理斐波那契数,开到 70 足以把所有的数更改为斐波那契数。后线段树维护两个值,sum 为总和值,change 为更改后的总和值,同时运用延迟标记。每次 1 操作只是单纯的单点更新,2 操作查询操作。3 操作的话则延迟标记为 1,代表有需要改变值,同时将 change 的总和赋值给 sum 即可。寻找最近的斐波那契数二分查找即可。
AC:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int MAXN = 100000;
ll fin[75], sum[MAXN * 3], change[MAXN * 3];
int cover[MAXN * 3];
ll find_min (ll num) {
if (num <= 0) return fin[1];
ll it = lower_bound(fin + 1, fin + 70 + 1, num) - fin;
if (fin[it] == num) return num;
if (abs(fin[it] - num) < abs(fin[it - 1] - num)) return fin[it];
return fin[it - 1];
}
void init() {
fin[1] = 1;
fin[2] = 1;
for (ll i = 3; i <= 70; ++i) {
fin[i] = fin[i - 1] + fin[i - 2];
}
}
void push_up (ll node) {
sum[node] = sum[node << 1] + sum[node << 1 | 1];
change[node] = change[node << 1] + change[node << 1 | 1];
}
void push_down (ll node) {
if (cover[node] != -1) {
cover[node << 1] = cover[node << 1 | 1] = cover[node];
sum[node << 1] = change[node << 1];
sum[node << 1 | 1] = change[node << 1 | 1];
cover[node] = -1;
}
}
void build (ll node, ll l, ll r) {
if (l == r) {
sum[node] = 0;
change[node] = 1;
cover[node] = -1;
} else {
ll mid = (r + l) >> 1;
build(node << 1, l, mid);
build(node << 1 | 1, mid + 1, r);
cover[node] = -1;
push_up(node);
}
}
void updata_add (ll node, ll l, ll r, ll k, ll d) {
if (l == r) {
if (l == k) {
sum[node] += d;
change[node] = find_min( sum[node] );
}
return;
}
push_down(node);
ll mid = (r + l) >> 1;
if (k <= mid) updata_add(node << 1, l, mid, k, d);
else updata_add(node << 1 | 1, mid + 1, r, k, d);
push_up(node);
}
void updata_change (int node, int l, int r, int cl, int cr) {
if (cl > r || cr < l) return;
if (cl <= l && cr >= r) {
cover[node] = 1;
sum[node] = change[node];
return;
}
push_down(node);
ll mid = (r + l) >> 1;
if (cl <= mid) updata_change(node << 1, l, mid, cl, cr);
if (cr >= mid + 1) updata_change(node << 1 | 1, mid + 1, r, cl, cr);
push_up(node);
}
ll query (ll node, ll l, ll r, ll cl, ll cr) {
if (cl > r || cr < l) return 0;
if (cl <= l && cr >= r) return sum[node];
if (r == l) return 0;
push_down(node);
ll mid = (r + l) >> 1;
return query(node << 1, l, mid, cl, cr) +
query(node << 1 | 1, mid + 1, r, cl, cr);
}
int main() {
ll n, m;
init();
while (~scanf("%I64d%I64d", &n, &m)) {
build(1, 1, n);
while (m--) {
ll op, a, b;
scanf("%I64d%I64d%I64d", &op, &a, &b);
if (op == 2) printf("%I64d\n", query(1, 1, n, a, b));
else if (op == 1) updata_add(1, 1, n, a, b);
else updata_change(1, 1, n, a, b);
}
}
return 0;
}