Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is: [7] [2, 2, 3]
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
List<Integer> item = new ArrayList<Integer>();
if (candidates == null || candidates.length==0) {
return res;
}
Arrays.sort(candidates);
solve(candidates,target, 0, item ,res);
return res;
}
private void solve(int[] candidates, int target, int start, List<Integer> item,
List<List<Integer>> res) {
// TODO Auto-generated method stub
if (target < 0) {
return;
}
if (target == 0) {
res.add(new ArrayList<>(item));
return;
}
for (int j = start; j < candidates.length; j++) {
if (j > 0 && candidates[j] == candidates[j-1]) {
continue;
}
item.add(candidates[j]);
solve(candidates,target-candidates[j], j, item ,res);
item.remove(item.size()-1);
}
}
}
本文介绍了一种寻找候选数集合中所有可能组合的算法,这些组合的和等于目标数。文章详细阐述了如何通过递归实现该算法,并确保结果中没有重复的组合,同时保持组合元素的非递减顺序。
158

被折叠的 条评论
为什么被折叠?



