There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
if (len1 == 0 && len2%2==0) {
return (nums2[len2/2-1]+nums2[len2/2])/2.0;
}
if (len1 == 0 && len2%2==1) {
return nums2[len2/2];
}
if (len2 == 0 && len1%2==0) {
return (nums1[len1/2-1]+nums1[len1/2])/2.0;
}
if (len2 == 0 && len1%2==1) {
return nums1[len1/2];
}
int mid = (len1+len2)/2;
if ((len1+len2)%2 == 0) {
return (findKthNum(nums1, nums2, mid)+findKthNum(nums1, nums2, mid+1))/2.0;
} else {
return findKthNum(nums1, nums2, mid+1);
}
}
public static int findKthNum(int[] arr1, int[] arr2, int kth) {
if (arr1 == null || arr2 == null) {
throw new RuntimeException("Your arr is invalid!");
}
if (kth < 1 || kth > arr1.length + arr2.length) {
throw new RuntimeException("K is invalid!");
}
int[] longs = arr1.length >= arr2.length ? arr1 : arr2;
int[] shorts = arr1.length < arr2.length ? arr1 : arr2;
int l = longs.length;
int s = shorts.length;
if (kth <= s) {
return getUpMedian(shorts, 0, kth - 1, longs, 0, kth - 1);
}
if (kth > l) {
if (shorts[kth - l - 1] >= longs[l - 1]) {
return shorts[kth - l - 1];
}
if (longs[kth - s - 1] >= shorts[s - 1]) {
return longs[kth - s - 1];
}
return getUpMedian(shorts, kth - l, s - 1, longs, kth - s, l - 1);
}
if (longs[kth - s - 1] >= shorts[s - 1]) {
return longs[kth - s - 1];
}
return getUpMedian(shorts, 0, s - 1, longs, kth - s, kth - 1);
}
public static int getUpMedian(int[] a1, int s1, int e1, int[] a2, int s2, int e2) {
int mid1 = 0;
int mid2 = 0;
int offset = 0;
while (s1 < e1) {
mid1 = (s1 + e1) / 2;
mid2 = (s2 + e2) / 2;
offset = ((e1 - s1 + 1) & 1) ^ 1;
if (a1[mid1] > a2[mid2]) {
e1 = mid1;
s2 = mid2 + offset;
} else if (a1[mid1] < a2[mid2]) {
s1 = mid1 + offset;
e2 = mid2;
} else {
return a1[mid1];
}
}
return Math.min(a1[s1], a2[s2]);
}
}