好题一个,区间合并问题
大意就是问某个区间内最长连续上升序列的长度
跟POJ 3667 Hotel 差不多,貌似还更简单一些,因为只有单点更新
用到了lmx, rmx, mx,表示从左端点往右的连续长度,右端点往左的连续长度,区间内的最大连续长度
/*
ID: sdj22251
PROG: inflate
LANG: C++
*/
#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#define MAXN 100005
#define INF 1000000000
#define L(x) x<<1
#define R(x) x<<1|1
#define PI acos(-1.0)
#define eps 1e-7
using namespace std;
int a[MAXN];
struct node
{
int left, right, mid;
int lmx, rmx, mx;
}tree[4 * MAXN];
void up(int C)
{
tree[C].lmx = tree[L(C)].lmx;
tree[C].rmx = tree[R(C)].rmx;
if(tree[L(C)].lmx == tree[L(C)].right - tree[L(C)].left + 1 && a[tree[R(C)].left] > a[tree[L(C)].right])
tree[C].lmx += tree[R(C)].lmx;
if(tree[R(C)].rmx == tree[R(C)].right - tree[R(C)].left + 1 && a[tree[R(C)].left] > a[tree[L(C)].right])
tree[C].rmx += tree[L(C)].rmx;
int tmp = 0;
if(a[tree[R(C)].left] > a[tree[L(C)].right]) tmp = tree[L(C)].rmx + tree[R(C)].lmx;
tree[C].mx = max(tmp, max(tree[L(C)].mx, tree[R(C)].mx));
tree[C].mx = max(tree[C].mx, max(tree[C].lmx, tree[C].rmx));
}
void make_tree(int s, int e, int C)
{
tree[C].left = s;
tree[C].right = e;
tree[C].mid = (s + e) >> 1;
tree[C].lmx = tree[C].rmx = tree[C].mx = 1;
if(s == e) return;
make_tree(s, tree[C].mid, L(C));
make_tree(tree[C].mid + 1, e, R(C));
up(C);
}
void update(int p, int C)
{
if(tree[C].left == tree[C].right)return;
if(tree[C].mid >= p) update(p, L(C));
else update(p, R(C));
up(C);
}
int query(int s, int e, int C)
{
if(tree[C].left >= s && tree[C].right <= e) return tree[C].mx;
int s1 = 0, s2 = 0;
if(tree[C].mid >= s) s1 = query(s, e, L(C));
if(tree[C].mid < e) s2 = query(s, e, R(C));
int t = max(s1, s2);
if(a[tree[C].mid] < a[tree[C].mid + 1])
t = max(t, min(tree[C].mid - s + 1, tree[L(C)].rmx) + min(e - tree[C].mid, tree[R(C)].lmx));
return t;
}
int main()
{
int T, n, m, x, y;
char s[5];
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++)
scanf("%d", &a[i]);
make_tree(0, n - 1, 1);
while(m--)
{
scanf("%s%d%d", s, &x, &y);
if(s[0] == 'Q') printf("%d\n", query(x, y, 1));
else {a[x] = y; update(x, 1);}
}
}
return 0;
}
区间合并问题的高效解决
本文探讨了区间合并问题的解决方法,通过使用lmx、rmx和mx等概念,实现了一个简洁高效的算法来确定区间内最长连续上升序列的长度。通过实例分析,展示了算法的应用与优势。
527

被折叠的 条评论
为什么被折叠?



