很裸的一个题吧,就是先求出一个最小生成树,然后求的同时把图给建好,然后枚举起点,求最短路。因为在树上求最短路必然是O(n)的,所以总的复杂度是O(n2)的
求最短路的时候囧了,直接写的SPFA,其实直接BFS就行了。不过明显写SPFA写习惯了。
当然这道题卡人的地方很猥琐,是精度。
用double竟然精度都不够,很诧异啊,然后经指点才知道,题目说最多有两位小数,直接放大100倍成long long类型的就行了,而且不能用double直接乘100,会挂,可以用字符串读入,然后处理,或者加个eps,然后输出的时候也没什么要求,其实就三种情况,整数,1个小数,二个小数。判断一下就行了。
/*
ID: sdj22251
PROG: inflate
LANG: C++
*/
#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#define MAXN 1105
#define INF 10000000000000000LL
#define L(x) x<<1
#define R(x) x<<1|1
#define PI acos(-1.0)
#define eps 1e-7
using namespace std;
long long dis[MAXN][MAXN];
long long lowcost[MAXN], d[MAXN];
int nearvex[MAXN], head[MAXN], vis[MAXN], q[MAXN * MAXN];
int n, m, e;
struct node
{
int v, next;
long long w;
}edge[2 * MAXN * MAXN];
void insert(int x, int y, long long w)
{
edge[e].v = y;
edge[e].w = w;
edge[e].next = head[x];
head[x] = e++;
}
void spfa(int src)
{
for(int i = 1; i <= n; i++)
d[i] = INF;
int h = 0, t = 1;
memset(vis, 0, sizeof(vis));
d[src] = 0;
q[0] = src;
vis[src] = 1;
while(h < t)
{
int u = q[h++];
vis[u] = 0;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].v;
long long w = edge[i].w;
if(d[v] > d[u] + w)
{
d[v] = d[u] + w;
if(!vis[v])
{
q[t++] = v;
vis[v] = 1;
}
}
}
}
}
void out(long long x)
{
if(x % 100 == 0) cout << x / 100 << endl;
else if(x % 10 == 0) cout << x / 100 << '.' << x / 10 % 10 << endl;
else cout << x / 100 << '.' << x % 100 << endl;
}
void prim(int u)
{
long long sumweight = 0;
for(int i = 1; i <= n; i++)
{
lowcost[i] = dis[u][i];
nearvex[i] = u;
}
nearvex[u] = -1;
for(int i = 1; i < n; i++)
{
long long mi = INF;
int v = -1;
for(int j = 1; j <= n; j++)
{
if(nearvex[j] != -1 && lowcost[j] < mi)
{
v = j; mi = lowcost[j];
}
}
if(v != -1)
{
insert(nearvex[v], v, lowcost[v]);
insert(v, nearvex[v], lowcost[v]);
nearvex[v] = -1;
sumweight += lowcost[v];
for(int j = 1; j <= n; j++)
{
if(nearvex[j] != -1 && dis[v][j] < lowcost[j])
{
lowcost[j] = dis[v][j];
nearvex[j] = v;
}
}
}
}
out(sumweight);
}
long long in(char *s)
{
int len = strlen(s);
int id = len - 1;
for(int i = 0; i < len; i++)
{
if(s[i] == '.'){id = i; break;}
}
int cnt = len - 1 - id;
for(int i = 0; i < 2 - cnt; i++)
s[len++] = '0';
long long sum = 0;
for(int i = 0; i < len; i++)
{
if(s[i] == '.') continue;
int sx = s[i] - '0';
sum = sum * 10 + sx;
}
return sum;
}
int main()
{
int T;
char s[26];
while(scanf("%d", &T) != EOF){
while(T--)
{
e = 0;
memset(head, -1, sizeof(head));
scanf("%d", &n);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
{
scanf("%s", s);
dis[i][j] = in(s);
}
prim(1);
long long mi = INF;
int pos = 1;
for(int i = 1; i <= n; i++)
{
spfa(i);
long long sum = 0;
for(int j = 1; j <= n; j++)
{
sum += d[j];
}
if(sum < mi)
{
mi = sum;
pos = i;
}
}
mi *= 2;
cout << pos << " ";
out(mi);
printf("\n");
//printf("%d %f\n\n", pos, mi * 2);
}
}
return 0;
}