The Triangle--poj--1163

本文介绍了一种使用动态规划方法解决数三角形内从顶点到基的最大路径和问题的算法。通过从三角形底部向上逐层计算,最终得到顶点的最大路径和。提供了一个实例输入输出,展示了解题过程,并对比了深搜和动态规划两种方法的效率。

The Triangle

Time Limit: 1000MS

Memory Limit: 10000K

Total Submissions: 19122

Accepted: 11144

Description

7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

(Figure 1)

Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

Input

Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

Output

Your program is to write to standard output. The highest sum is written as an integer.

Sample Input

5

7

3 8

8 1 0

2 7 4 4

4 5 2 6 5

Sample Output

30

Source

IOI 1994

解题思路:

基本的DP,从底往上扫描数组,递推式如下:

aij=aij+maxai+1j),ai+1j+1))

其实刚开始用的是dfs递归,但结果操时。

先贴上dfs的代码吧(TLE)

#include <iostream>

const int MAX = 150;

int N;

int in[MAX][MAX];

//深搜

int dfs(int i, int j)

{

if(i == N-1) //到底了

{

return in[i][j];

}

int tm1 = dfs(i+1, j) + in[i][j]; //当前节点的左下边的节点

int tm2 = dfs(i+1, j+1) + in[i][j]; //当前节点的右下边节点

return tm1>tm2 ? tm1 : tm2; //取大的咯

}

int main()

{

int max = 0;

std::cin>>N;

for(int i=0; i<N; i++)

{

for(int j=0; j<i+1; j++)

{

std::cin>>in[i][j];

}

}

std::cout<<dfs(0, 0)<<std::endl; //从根节点开始

system("pause");

return 0;

}

下面是DP的代码(AC):

#include <iostream>

const int MAX = 101;

int N;

int in[MAX][MAX];

int main()

{

int max = 0;

std::cin>>N;

for(int i=0; i<N; i++)

{

for(int j=0; j<i+1; j++)

{

std::cin>>in[i][j];

}

}

//从数组倒数第二行开始扫描,从底向上计算

//in[i,j] = in[i,j] + max(in[i+1, j], in[i+1, j+1])

//最后最大值就存于in[0][0]

for(int i=N-2; i>=0; i--)

{

for(int j=0; j<i+1; j++)

{

if(in[i+1][j] > in[i+1][j+1])

in[i][j] += in[i+1][j];

else

in[i][j] += in[i+1][j+1];

}

}

std::cout<<in[0][0]<<std::endl;

system("pause");

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值