Hadoop Map/Reduce 执行流程关键代码
JobClient.runJob(conf) | 运行job
|-->JobClient jc = new JobClient(job);
|-->RunningJob rj = jc.submitJob(job);
|-->submitJobInternal(job);
|-->int reduces = job.getNumReduceTasks();
|-->JobContext context = new JobContext(job, jobId);
|-->maps = writeOldSplits(job, submitSplitFile);
|-->job.setNumMapTasks(maps);
|-->job.writeXml(out);
|-->JobStatus status = jobSubmitClient.submitJob(jobId);
JobTracker.submitJob(JobId) |提交job
|-->JobInProgress job = new JobInProgress(jobId, this, this.conf);
|-->checkAccess(job, QueueManager.QueueOperation.SUBMIT_JOB); |检查权限
|-->checkMemoryRequirements(job); |检查内存需求
|-->addJob(jobId, job); |添加至job队列
|-->jobs.put(job.getProfile().getJobID(), job);
|--> for (JobInProgressListener listener : jobInProgressListeners) |添加至监听器,供调度使用
|-->listener.jobAdded(job);
JobTracker.heartbeat() |JobTracker启动后供TaskTracker以RPC方式来调用,返回Response集合
|-->List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>();
|-->tasks = taskScheduler.assignTasks(taskTrackerStatus); |通过调度器选择合适的tasks
|-->for (Task task : tasks)
|-->expireLaunchingTasks.addNewTask(task.getTaskID());
|-->actions.add(new LaunchTaskAction(task)); |实际actions还会添加commmitTask等
|-->response.setHeartbeatInterval(nextInterval);
|-->response.setActions(actions.toArray(new TaskTrackerAction[actions.size()]));
|-->return response;
TaskTracker.offerService |TaskTracker启动后通过offerservice()不断发心跳至JobTracker中
|-->transmitHeartBeat()
|-->HeartbeatResponse heartbeatResponse = jobClient.heartbeat(status, justStarted, justInited,askForNewTask, heartbeatResponseId);
|-->TaskTrackerAction[] actions = heartbeatResponse.getActions();
|-->for(TaskTrackerAction action: actions)
|-->if (action instanceof LaunchTaskAction)
|-->addToTaskQueue((LaunchTaskAction)action); |添加至执行Queue,根据map/reduce task分别添加
|-->if (action.getTask().isMapTask()) {
|-->mapLauncher.addToTaskQueue(action);
|-->TaskInProgress tip = registerTask(action, this);
|-->tasksToLaunch.add(tip);
|-->tasksToLaunch.notifyAll(); |唤醒阻塞进程
|-->else
|-->reduceLauncher.addToTaskQueue(action);
TaskLauncher.run()
|--> while (tasksToLaunch.isEmpty())
|-->tasksToLaunch.wait();
|-->tip = tasksToLaunch.remove(0);
|-->startNewTask(tip);
|-->localizeJob(tip);
|-->launchTaskForJob(tip, new JobConf(rjob.jobConf));
|-->tip.setJobConf(jobConf);
|-->tip.launchTask(); |TaskInProgress.launchTask()
|-->this.runner = task.createRunner(TaskTracker.this, this); |区分map/reduce
|-->this.runner.start();
MapTaskRunner.run() |执行MapTask
|-->File workDir = new File(lDirAlloc.getLocalPathToRead() |准备执行路径
|-->String jar = conf.getJar(); |准备jar包
|-->File jvm = new File(new File(System.getProperty("java.home"), "bin"), "java"); |获取jvm
|-->vargs.add(Child.class.getName()); |添加参数,Child类作为main主函数启动
|-->tracker.addToMemoryManager(t.getTaskID(), t.isMapTask(), conf, pidFile); |添加至内存管理
|-->jvmManager.launchJvm(this, jvmManager.constructJvmEnv(setup,vargs,stdout,stderr,logSize, |统一纳入jvm管理器当中并启动
workDir, env, pidFile, conf));
|-->mapJvmManager.reapJvm(t, env); |区分map/reduce操作
JvmManager.reapJvm() |
|--> while (jvmIter.hasNext())
|-->JvmRunner jvmRunner = jvmIter.next().getValue();
|-->JobID jId = jvmRunner.jvmId.getJobId();
|-->setRunningTaskForJvm(jvmRunner.jvmId, t);
|-->spawnNewJvm(jobId, env, t);
|-->JvmRunner jvmRunner = new JvmRunner(env,jobId);
|-->jvmIdToRunner.put(jvmRunner.jvmId, jvmRunner);
|-->jvmRunner.start(); |执行JvmRunner的run()方法
|-->jvmRunner.run()
|-->runChild(env);
|-->List<String> wrappedCommand = TaskLog.captureOutAndError(env.setup, env.vargs, env.stdout, env.stderr,
env.logSize, env.pidFile); |选取main函数
|-->shexec.execute(); |执行
|-->int exitCode = shexec.getExitCode(); |获取执行状态值
|--> updateOnJvmExit(jvmId, exitCode, killed); |更新Jvm状态
Child.main() 执行Task(map/reduce)
|-->JVMId jvmId = new JVMId(firstTaskid.getJobID(),firstTaskid.isMap(),jvmIdInt);
|-->TaskUmbilicalProtocol umbilical = (TaskUmbilicalProtocol)RPC.getProxy(TaskUmbilicalProtocol.class,
TaskUmbilicalProtocol.versionID, address, defaultConf);
|--> while (true)
|-->JvmTask myTask = umbilical.getTask(jvmId);
|-->task = myTask.getTask();
|-->taskid = task.getTaskID();
|-->TaskRunner.setupWorkDir(job);
|-->task.run(job, umbilical); |以maptask为例
|-->TaskReporter reporter = new TaskReporter(getProgress(), umbilical);
|-->if (useNewApi)
|-->runNewMapper(job, split, umbilical, reporter);
|-->else
|-->runOldMapper(job, split, umbilical, reporter);
|-->inputSplit = (InputSplit) ReflectionUtils.newInstance(job.getClassByName(splitClass), job);
|-->MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner = ReflectionUtils.newInstance(job.getMapRunnerClass(), job);
|-->runner.run(in, new OldOutputCollector(collector, conf), reporter);
MapRunner.run()
|--> K1 key = input.createKey();
|-->V1 value = input.createValue();
|-->while (input.next(key, value))
|-->mapper.map(key, value, output, reporter);
|--> if(incrProcCount)
|-->reporter.incrCounter(SkipBadRecords.COUNTER_GROUP,
|-->SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS, 1);
|-->mapper.close();