map-reduce编程核心问题

本文探讨了如何将大型问题分解为小型任务并在多台机器上并行执行的方法。涉及任务分解、资源分配、数据获取、同步控制及错误处理等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1-How do we break up a large problem into smaller tasks? More specically, how do
we decompose the problem so that the smaller tasks can be executed in parallel?

2- How do we assign tasks to workers distributed across a potentially large number
of machines (while keeping in mind that some workers are better suited to running
some tasks than others, e.g., due to available resources, locality constraints, etc.)?

3-How do we ensure that the workers get the data they need?

4-How do we coordinate synchronization among the dierent workers?

5-How do we share partial results from one worker that is needed by another?

6- How do we accomplish all of the above in the face of software errors and hardware
faults?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值