压缩感知参考文献续

1641 Convex Optimization - Boyd, Vandenberghe
1211 Vector Quantization and Signal Compression - Gersho, Gray - 1992
605 Compressed Sensing - Donoho
310 Stable signal recovery from incomplete and inaccurate measurements - Candes, Romberg, et al.
197 Latent semantic indexing: A probabilistic analysis - Papadimitriou, Raghavan, et al. - 1998
191 Compressive sampling - Candès - 2006
118 Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House - Ristic, Arulampalam, et al. - 2004
109 A simple proof of the restricted isometry property for random matrices - Baraniuk, Davenport, et al. - 2008
64 Contextbased adaptive binary arithmetic coding in the H.264/AVC video compression standard - Marpe, Schwarz, et al. - 2003
42 Background subtraction techniques: a review. Systems - Piccardi - 2004
29 S.: Enhancing sparsity by reweighted ℓ1 minimization - Candès, Wakin, et al. - 2008
27 The smashed filter for compressive classification and target recognition - Davenport, Duarte, et al. - 2007
23 An architecture for compressive imaging - Wakin, Laska, et al.
17 Compressive imaging for video representation and coding, Picture Coding Symposium–PCS 2006 - Wakin, Laska, et al. - 2006
16 Random lens imaging - Fergus, Torralba, et al. - 2006
11 Compressive Sensing for Background Subtraction - Cevher, Sankaranarayanan, et al. - 2008
11 Detection and estimation with compressive measurements - Davenport, Wakin, et al. - 2006
11 Compressive coded aperture superresolution image reconstruction - Marcia, Willett - 2008
10 Compressive sampling for signal detection - Haupt, Nowak - 2007
9 In pursuit of a root - Berg, Friedlander
9 Wavelet-domain compressive signal reconstruction using a hidden Markov tree model - Duarte, Wakin, et al. - 2008
8 M.: A multiscale framework for compressive sensing of video - Park, Wakin - 2009
5 Compressive Video Sampling - Stankovic, Stankovic, et al. - 2008
3 Compressive-projection principal component analysis - Fowler - 2009
2 Compressive Sensing,” Signal Processing Magazine - Baraniuk - 2007
2 Compressed video sensing - Drori - 2008
2 Hash-based identification of sparse image tampering - Tagliasacchi, Valenzise, et al. - 2009
2 Compressed Imaging With a Separable Sensing Operator - Rivenson, Stern - 2009
1 Privacy-enabled object tracking in video sequences using compressive sensing - Cossalter, Valenzise, et al. - 2009
1 A robust approach to motion detection and tracking in indoor video surveillance - Bonarini, Matteucci, et al. - 2005
1 Robust particle filtering for object tracking - Rowe, Rius, et al. - 2005
标题基于SpringBoot+Vue的社区便民服务平台研究AI更换标题第1章引言介绍社区便民服务平台的研究背景、意义,以及基于SpringBoot+Vue技术的研究现状和创新点。1.1研究背景与意义分析社区便民服务的重要性,以及SpringBoot+Vue技术在平台建设中的优势。1.2国内外研究现状概述国内外在社区便民服务平台方面的发展现状。1.3研究方法与创新点阐述本文采用的研究方法和在SpringBoot+Vue技术应用上的创新之处。第2章相关理论介绍SpringBoot和Vue的相关理论基础,以及它们在社区便民服务平台中的应用。2.1SpringBoot技术概述解释SpringBoot的基本概念、特点及其在便民服务平台中的应用价值。2.2Vue技术概述阐述Vue的核心思想、技术特性及其在前端界面开发中的优势。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue如何有效整合,以提升社区便民服务平台的性能。第3章平台需求分析与设计分析社区便民服务平台的需求,并基于SpringBoot+Vue技术进行平台设计。3.1需求分析明确平台需满足的功能需求和性能需求。3.2架构设计设计平台的整体架构,包括前后端分离、模块化设计等思想。3.3数据库设计根据平台需求设计合理的数据库结构,包括数据表、字段等。第4章平台实现与关键技术详细阐述基于SpringBoot+Vue的社区便民服务平台的实现过程及关键技术。4.1后端服务实现使用SpringBoot实现后端服务,包括用户管理、服务管理等核心功能。4.2前端界面实现采用Vue技术实现前端界面,提供友好的用户交互体验。4.3前后端交互技术探讨前后端数据交互的方式,如RESTful API、WebSocket等。第5章平台测试与优化对实现的社区便民服务平台进行全面测试,并针对问题进行优化。5.1测试环境与工具介绍测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值