Java实现斐波那契数列

补习斐波纳契数列:递归与递推方式的Java实现
部署运行你感兴趣的模型镜像

为了应付软考,补补基础知识,特记录下以备后用。

斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)。

以下是Java代码实现(递归与递推两种方式):

import java.util.Scanner;

/**
 * Fibonacci
 *
 * @author tongqian.zhang
 */
public class Fibonacci {

	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		System.out.println("Please input this fibonacci n:");
		int n = scanner.nextInt(); // 假设输入为大于零的整数
		
		System.out.println(fibonacci(6) + ":" + fibonacciNormal(6));
		
		int sum = 0;
		for(int i = 1; i <= n; i++){
			sum += fibonacci(i);
		}
		System.out.println(sum);
	}
	
	// 递归实现方式
	public static int fibonacci(int n){
		if(n <= 2){
			return 1;
		}else{
			return fibonacci(n-1) + fibonacci(n-2);
		}
	}
	
	// 递推实现方式
	public static int fibonacciNormal(int n){
		if(n <= 2){
			return 1;
		}
		int n1 = 1, n2 = 1, sn = 0;
		for(int i = 0; i < n - 2; i ++){
			sn = n1 + n2;
			n1 = n2;
			n2 = sn;
		}
		return sn;
	}
}



您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值