思路:
1 递归:
简单的说,就是s1和s2是scramble的话,那么必然存在一个在s1上的长度l1,将s1分成s11和s12两段,同样有s21和s22。
那么要么s11和s21是scramble的并且s12和s22是scramble的;
要么s11和s22是scramble的并且s12和s21是scramble的。
如果要能通过OJ,还必须把字符串排序后进行剪枝
2 DP:
使用了一个三维数组boolean result[len][len][len],其中第一维为子串的长度,第二维为s1的起始索引,第三维为s2的起始索引。
result[k][i][j]表示s1[i...i+k]是否可以由s2[j...j+k]变化得来。
http://www.blogjava.net/sandy/archive/2013/05/22/399605.html
package Level5;
import java.util.Arrays;
/**
* Scramble String
*
* Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat" is a scrambled string of "great".
Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae" is a scrambled string of "great".
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
*
*/
public class S87 {
public static void main(String[] args) {
String s1 = "abab";
String s2 = "bbaa";
System.out.println(isScramble(s1, s2));
System.out.println(isScrambleDP(s1, s2));
}
public static boolean isScramble(String s1, String s2) {
if(s1.length() != s2.length()){
return false;
}
if(s1.length()==1 && s2.length()==1){
return s1.charAt(0) == s2.charAt(0);
}
// 排序后可以通过
char[] s1ch = s1.toCharArray();
char[] s2ch = s2.toCharArray();
Arrays.sort(s1ch);
Arrays.sort(s2ch);
if(!new String(s1ch).equals(new String(s2ch))){
return false;
}
for(int i=1; i<s1.length(); i++){ // 至少分出一个字符出来
String s11 = s1.substring(0, i);
String s12 = s1.substring(i);
String s21 = s2.substring(0, i);
String s22 = s2.substring(i);
// System.out.println(s1 + "-" + s2 + ": "+ s11 + ", " + s12 + ", " + s21 + ", " + s22);
// 检测前半部是否匹配
if(isScramble(s11, s21) && isScramble(s12, s22)){
return true;
}
// 前半部不匹配,检测后半部是否匹配
s21 = s2.substring(0, s2.length()-i);
s22 = s2.substring(s2.length()-i);
if(isScramble(s11, s22) && isScramble(s12, s21)){
return true;
}
}
return false;
}
public static boolean isScrambleDP(String s1, String s2) {
int len = s1.length();
if(len != s2.length()){
return false;
}
if(len == 0){
return true;
}
char[] c1 = s1.toCharArray();
char[] c2 = s2.toCharArray();
// canTransform 第一维为子串的长度delta,第二维为s1的起始索引,第三维为s2的起始索引
// canTransform[k][i][j]表示s1[i...i+k]是否可以由s2[j...j+k]变化得来。
boolean[][][] canT = new boolean[len][len][len];
for(int i=0; i<len; i++){
for(int j=0; j<len; j++){ // 如果字符串总长度为1,则取决于唯一的字符是否想到
canT[0][i][j] = c1[i] == c2[j];
}
}
for(int k=2; k<=len; k++){ // 子串的长度
for(int i=len-k; i>=0; i--){ // s1[i...i+k]
for(int j=len-k; j>=0; j--){ // s2[j...j+k]
boolean canTransform = false;
for(int m=1; m<k; m++){ // 尝试以m为长度分割子串
// canT[k][i][j]
canTransform = (canT[m-1][i][j] && canT[k-m-1][i+m][j+m]) || // 前前后后匹配
(canT[m-1][i][j+k-m] && canT[k-m-1][i+m][j]); // 前后后前匹配
if(canTransform){
break;
}
}
canT[k-1][i][j] = canTransform;
}
}
}
return canT[len-1][0][0];
}
}