UVA 10382 Watering Grass(区间嵌套)

本文介绍了一个经典的算法问题——浇水草地问题。该问题涉及通过给定的洒水器位置和操作半径来确定最少需要激活多少个洒水器才能浇灌整片草地。文章详细讨论了如何将此问题转化为区间覆盖问题,并使用贪心算法求解,同时考虑了精度问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem E Watering Grass Input:standard input Output:standard output Time Limit:3 seconds

nsprinklers are installed in a horizontal strip of grasslmeters long andwmeters wide. Each sprinkler is installed at the horizontal center line of the strip. For each sprinkler we are given its position as the distance from the left end of the center line and its radius of operation.

What is the minimum number of sprinklers to turn on in order to water the entire strip of grass?

Input

Input consists of a number of cases. The first line for each case contains integer numbersn,landwwithn<= 10000. The nextnlines contain two integers giving the position of a sprinkler and its radius of operation. (The picture above illustrates the first case from the sample input.)

Output

For each test case output the minimum number of sprinklers needed to water the entire strip of grass. If it is impossible to water the entire strip output -1.

Sample input

8 20 2

5 3

4 1

1 2

7 2

10 2

13 3

16 2

19 4

3 10 1

3 5

9 3

6 1

3 10 1

5 3

1 1

9 1

Sample Output

6

2

-1


转化为区间嵌套,用圆和矩形的边形成的弦区间,贪心求之,注意精度问题
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstdlib>
using namespace std;
struct data{
	double x,y;
}f[10010];
#define eps 1e-7
inline int ifcmp(double x){//精度
    if (x > -eps) return 1;
    else return -1;
}
bool cmp(data a,data b)
{
	return a.x<b.x||(a.x==b.x&&a.y>b.y);
}
int main()
{
	int n,l,w,i,j,k,a,b;
	while(scanf("%d%d%d",&n,&l,&w)!=EOF)
	{
		for(i=0,j=0;i<n;i++)
		{
			scanf("%d%d",&a,&b);
			if(2*b<w)	
				continue;
			double tem;
			tem=sqrt((double)b*b-(double)w*w/4.0);//半弦
			f[j].x=a-tem;
			f[j].y=a+tem;
			j++;
		}
		sort(f,f+j,cmp);
		int pre=0,pos,sum=0,max_j;
		sum=1;
		i=1;
		max_j=0;
		while(true)
		{
			bool flag=false;
			while(ifcmp(f[pre].y-f[i].x)>0&&i<j)
			{
				flag=true;
				if(ifcmp(f[i].y-f[max_j].y)>0)
					max_j=i;
				i++;
			}
			if(!flag||(i>j&&ifcmp(f[max_j].y-(double)l)<0))
			{
				sum=-1;
				break;
			}
			pre=max_j;
			sum++;
			if(ifcmp(f[max_j].y-(double)l)>0)
				break;
		}
		printf("%d\n",sum);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值