1 如何监听到文件夹内新增了文件
2 如何监听到原文件内容数据做了变更
3 为了有两个bolt 一个用于切分 一个用于统计单词个数 为何不写在一起呢??
每一个组件完成单独功能 执行速度非常快 并且提高每个组件的并行度已达到单位时间内处理数据更大
4 参考flume ng 对处理过的文件做修改, 这里是将处理过的文件后缀更改达到目的
操作图如下:
2 单词计数代码:
package changping.houzhihoujue.storm;
import java.io.File;
import java.io.IOException;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.commons.io.FileUtils;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;
/**
* 作业:实现单词计数。
* (1)要求从一个文件夹中把所有文件都读取,计算所有文件中的单词出现次数。
* (2)当文件夹中的文件数量增加是,实时计算所有文件中的单词出现次数。
*/
public class MyWordCountTopology {
// 祖品火车 创建轨道 发车流程
public static void main( String[] args ) {
String DATASOURCE_SPOUT = DataSourceSpout.class.getSimpleName();
String SPLIT_BOLD = SplitBolt.class.getSimpleName();
String COUNT_BOLT = CountBolt.class.getSimpleName();
final TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATASOURCE_SPOUT, new DataSourceSpout());
builder.setBolt(SPLIT_BOLD, new SplitBolt()).shuffleGrouping(DATASOURCE_SPOUT);
builder.setBolt(COUNT_BOLT, new CountBolt()).shuffleGrouping(SPLIT_BOLD);
final LocalCluster localCluster = new LocalCluster();
final Config config = new Config();
localCluster.submitTopology(MyWordCountTopology.class.getSimpleName(), config, builder.createTopology());
Utils.sleep(9999999);
localCluster.shutdown();
}
}
// 数据源
class DataSourceSpout extends BaseRichSpout{
private Map conf;
private TopologyContext context;
private SpoutOutputCollector collector;
public void open(Map conf, TopologyContext context,SpoutOutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
}
public void nextTuple() {
// 过滤文件夹D:/father 得到以txt结尾的文件
Collection<File> files = FileUtils.listFiles(new File("D:/father"), new String[]{"txt"}, true);
if(files != null && files.size() > 0){
for(File file : files){
try {// 将文件每一行都发射到 bolt内
List<String> lines = FileUtils.readLines(file);
for(String line : lines){
collector.emit(new Values(line));
}
//修改操作完的文件(这里是修改后缀) 这样nextTuple方法就不会再重新处理该文件
FileUtils.moveFile(file, new File(file.getAbsolutePath() + "." + System.currentTimeMillis()));
} catch (IOException e) {
e.printStackTrace();
}
}
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("line"));
}
}
// 切分单词逻辑
class SplitBolt extends BaseRichBolt{
private Map conf;
private TopologyContext context;
private OutputCollector collector;
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.conf = stormConf;
this.context = context;
this.collector = collector;
}
public void execute(Tuple input) {
String line = input.getStringByField("line");
String[] words = line.split("\\s");
for(String word : words){ // 发送每一个单词
System.err.println(word);
collector.emit(new Values(word));
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
//统计单词逻辑
class CountBolt extends BaseRichBolt{
private Map stormConf;
private TopologyContext context;
private OutputCollector collector;
public void prepare(Map stormConf, TopologyContext context,OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
}
private HashMap<String, Integer> map = new HashMap<String, Integer>();
public void execute(Tuple input) {
String word = input.getStringByField("word");
System.err.println(word);
Integer value = map.get(word);
if(value==null){
value = 0;
}
value++;
map.put(word, value);
//把结果写出去
System.err.println("============================================");
Utils.sleep(2000);
for (Entry<String, Integer> entry : map.entrySet()) {
System.out.println(entry);
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
}
/*class CountBolt extends BaseRichBolt{
private Map conf;
private TopologyContext context;
private OutputCollector collector;
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
}
*//**
* 对单词进行计数
*//*
Map<String, Integer> countMap = new HashMap<String, Integer>();
public void execute(Tuple tuple) {
//读取tuple
String word = tuple.getStringByField("word");
//保存每个单词
Integer value = countMap.get(word);
if(value==null){
value = 0;
}
value++;
countMap.put(word, value);
//把结果写出去
System.err.println("============================================");
Utils.sleep(2000);
for (Entry<String, Integer> entry : countMap.entrySet()) {
System.out.println(entry);
}
}
public void declareOutputFields(OutputFieldsDeclarer arg0) {
}
}*/
3 集群运行累加写法:
package changping.houzhihoujue.storm;
import java.io.File;
import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import org.apache.commons.io.FileUtils;
import ch.qos.logback.core.util.TimeUtil;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
/**
* 本地运行:
* 实现累加
* @author zm
*
*/
public class MyLocalStormTopology {
/**
* 组装火车 轨道 并让火车在轨道上行驶
* @throws InterruptedException
*/
public static void main(String[] args) throws Exception {
// 祖品列车
TopologyBuilder topologyBuilder = new TopologyBuilder();
topologyBuilder.setSpout("1", new MySpout2()); // 定义1号车厢
topologyBuilder.setBolt("2", new MyBolt1()).shuffleGrouping("1");// 定义2号车厢 并和1号车厢连接起来
// 造出轨道
/*LocalCluster localCluster = new LocalCluster();// 造出轨道 在本地运行
Config config = new Config();
// 轨道上运行列车, 三个参数分别为:定义的列车名,列车服务人员,轨道上跑的列车本身
localCluster.submitTopology(MyLocalStormTopology.class.getSimpleName(), config, topologyBuilder.createTopology());
TimeUnit.SECONDS.sleep(99999);// 设置列车运行时间
localCluster.shutdown();// 跑完后就停止下来, 否则storm是永不停止
*/
// 造出轨道 在集群中运行
StormSubmitter stormSubmitter = new StormSubmitter();// storm集群执行
HashMap conf = new HashMap();
stormSubmitter.submitTopology(MyLocalStormTopology.class.getSimpleName(), conf, topologyBuilder.createTopology());
}
}
//创建火车头
class MySpout2 extends BaseRichSpout {
private Map conf;
private TopologyContext context;
private SpoutOutputCollector collector;
// 此方法首先被调用 打开storm系统外的数据源
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
}
private int i = 0;
// 认为是NameNode的heartbeat,永无休息的死循环的调用 并是线程安全的操作, 这里每一次调用此方法 将i++发送到bolt
public void nextTuple() {
System.err.println(i);
// 将数据(i++)放在弹壳(Values)中,并发送给bolt
this.collector.emit(new Values(i++));
try {
List linesNum = FileUtils.readLines(new File("D:/father"));
System.err.println("文件行数为: " + linesNum.size());
} catch (IOException e1) {
System.err.println("文件行数为: 0 读取失败" );
// TODO Auto-generated catch block
e1.printStackTrace();
}
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//声明输出的字段的名称为 v1 只有在输出给别人时才会重写此方法
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("v1"));
}
}
// 创建车厢
class MyBolt1 extends BaseRichBolt{
private Map stormConf;
private TopologyContext context;
private OutputCollector collector;
// 准备下要对接收storm spout发送来的数据
public void prepare(Map stormConf, TopologyContext context,OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
}
private int sum = 0;
// 死循环,用于接收bolt送来的数据 这里storm每调用一次此方法 则获取发送来的tuple数据
public void execute(Tuple input) {
int i = input.getIntegerByField("v1");
sum += i;
System.err.println(sum);
}
// 只有向外发送数据时 此方法才会被调用 否则 不要实现此方法
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
}
3.1) 将代码通过eclipse export 导出包为: stormApp.jar, 上传到storm集群中,执行命令如下:
[root@h2master local]# storm/bin/storm jar stormApp.jar changping.houzhihoujue.storm.MyLocalStormTopology
可以看到提交成功:
Successfully uploaded topology jar to assigned location: /usr/local/storm/tmp/nimbus/inbox/stormjar-ffe04877-a31b-426e-bc21-02f201e8cdc2.jar
4 在UI上可以看到提交的 累加Topology summary 任务如下:

停止此任务命令写法为: kill 后面的名称为 上面截图中 红圈的名称
这样就关闭了累加的storm任务
# storm/bin/storm kill MyLocalStormTopology