CodeForces 228E The Road to Berland is Paved With Good Intentions 2Sat求解

本文详细解析了CodeForces228E问题的解决策略,采用2SAT算法解决包含0-1边权图的转换问题,通过枚举选择节点并反转与其相连的边,探讨如何最终实现所有边权为1的状态,或判断是否不可实现,并提供了解题步骤和关键思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

//CodeForces 228E The Road to Berland is Paved With Good Intentions 2Sat求解
/*
题目地址:
http://codeforces.com/problemset/problem/228/E

题意:
一幅图,100个点,最多10000条边,边权为0或1,
每次可以选择一个点,将与之相连的边取反(0变为1,1变为0)
问最后能不能将所有边变为1,若能,输出索取的点,否则,输出Impossible

思路:
2Sat
设	i为选这个点,i'为不选这个点
	j为选这个点,j'为不选这个点
枚举每一条边,
如果是0:	i->j'
			i'->j
			j->i'
			j'->i

如果是1:	i->j
			i'->j'
			j->i
			j'->i'

*/



#include<stdio.h>
#include<iostream>
#include<queue>
#include<string>
using namespace std;

#define N 205
#define M 40005

int stack[N], LOW[N], DFN[N], belong[N],head[N];
int top, cnt, tot, Index, num;
bool inStack[N];

int head1[N],degree[N],order[N],color[N],id[N],re[N];
int num1,nnum;

int n,m;

struct node{
	int from;
	int to;
	int val;
}s[M];

struct Edge{
	int from;
	int to;
	int next;
}edge[M],road[M];

void addedge(int from, int to){
	edge[num].from = from;
	edge[num].to = to;
	edge[num].next = head[from];
	head[from] = num++;
}

void Tarjan(int u) { 
	int v;
	stack[++top] = u;
	inStack[u] = true;
	LOW[u] = DFN[u] = ++Index;
				
	for(int i = head[u]; i != -1; i = edge[i].next){
		v = edge[i].to;
		if (!DFN[v]) {
			Tarjan(v);
			if (LOW[u] > LOW[v])
				LOW[u] = LOW[v];
		} 	
		else if (inStack[v] && LOW[u] > DFN[v])
			LOW[u] = DFN[v];
	}
	if (LOW[u] == DFN[u]) {	
		cnt++;	
		do {
			v = stack[top--];
			inStack[v] = false;
			belong[v] = cnt;
			id[v] = cnt;
		} while (v != u);
	}
}

void init(){
	memset(head,-1,sizeof(head));
	memset(head1,-1,sizeof(head1));
	memset(DFN,0,sizeof(DFN));
	memset(inStack,0,sizeof(inStack));
	cnt = Index = top = num = num1 = 0;
}

void addroad(int from,int to){
	road[num1].from = from;
	road[num1].to=to;
	road[num1].next=head1[from];
	head1[from]=num1++;
}

void ReBuild(){
	int i,k1,k2;
	memset(degree,0,sizeof(degree));
	for(i = 0; i < num; i++){
		k1 = belong[edge[i].from];
		k2 = belong[edge[i].to];
		if(k1 != k2){
			addroad(k2,k1);
			degree[k1]++;
		}
	}
}

void TopSort(){
	nnum = 0;
	queue<int>Q;
	for(int i = 1; i <= cnt; i++)
		if(degree[i] == 0)
			Q.push(i);
		while(!Q.empty()){
			int p=Q.front();
			Q.pop();
			order[nnum++] = p;
			for(int h = head1[p]; h != -1; h = road[h].next){
				degree[road[h].to]--;
				if(degree[road[h].to] == 0)
					Q.push(road[h].to);
			}
		}
}

void dfs_color(int v){
	color[v]=-1;
	for(int h = head1[v]; h != -1;h = road[h].next)
		if(color[road[h].to] == 0)
			dfs_color(road[h].to);
}

void dfs(){
	int u,v,i,j;
	memset(color,0,sizeof(color));
	for(j = 0; j < nnum;j++){
		u = order[j];
		if(color[u] != 0)
			continue;
		color[u] = 1;
		for(i = 1; i <= 2 * n; i++){
			if(id[i]==u)
            {	
				if(i > n)
					v = i - n;
				else
					v = i + n;
				v = id[v];
				dfs_color(v);
			}
		}
	}
	memset(re,0,sizeof(re));
	for(i = 1;i <= 2 * n; i++)
		if(color[belong[i]]==1)
			re[i]=1;
}

void solve(){
	ReBuild();
	TopSort();
	dfs();
}

int main(){
	int i;
	int a,b,c;
	while(scanf("%d %d",&n,&m)!=EOF){
		init();
		for(i = 1; i <= m; ++i){
			scanf("%d %d %d",&a,&b,&c);
			s[i].from = a;
			s[i].to = b;
			s[i].val = c;
			if(c == 0){
				addedge(a,b+n);
				addedge(a+n,b);
				addedge(b,a+n);
				addedge(b+n,a);
			}
			else{
				addedge(a,b);
				addedge(a+n,b+n);
				addedge(b,a);
				addedge(b+n,a+n);
			}
		}
		for(i = 1; i <= 2 * n; i++)
			if (!DFN[i])
				Tarjan(i);
		
		for(i = 1; i <= n; i++)
			if(belong[i]==belong[i+n])
				break;

		if(i <= n)
			puts("Impossible");
		else{
			solve();
			queue<int>Q;
			for(i = 1; i <= n; ++i)
				if(re[i])
					Q.push(i);
			printf("%d\n",Q.size());
			while(!Q.empty()){
				if(Q.size() > 1)
					printf("%d ",Q.front());
				else
					printf("%d\n",Q.front());
				Q.pop();
			}
		}
	}
	return 0;
}

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值