Windows 7 is Coming

微软宣布Windows7将于十月二十二日正式发售,并将在新PC上预装。与此同时,微软加强了反盗版措施,引入实时在线验证机制来对抗破解。尽管如此,破解爱好者们已开始研究多种破解方法。

Windows 7 is Coming

严竞雄
JingxiongYan@hotmail.com

北京时间六月三日凌晨消息 据国外媒体报道 微软周二确认称 计划于十月二十二日出售Windows 7 同时开始在新PC上预装这一操作系统

然而 以以往的规律来看 Windows的每一次版本更新 都会引来全球破解技术好手的重点关注 被微软寄予厚望的Windows 7也未能逃脱这样的命运 事实上 在Windows 7的Beta测试阶段 破解爱好者就已经开始了破解研究 并随之出现了各种各样的破解方法

目前 以笔者的调查结果来看 Windows 7的爱好者们较为偏爱的是7600.16385这一旗舰版本 并可以使用Samblg制作的Windows 7 RTM Loader或者是Windows 7 Tools 这一工具进行一键破解 该方法是将电脑虚拟成已经获得微软Windows 7 OEM授权的某品牌机 令Windows7的反盗版系统认为电脑已经获得OEM授权 当然 还有另一种方法则是将电脑主板的BIOS刷成品牌电脑的BIOS 使之获得Windows 7的OEM授权

可是 在最新的Win 7版本中 微软加入了反盗版机制 只要计算机联入互联网 系统内部的反盗版软件将会像杀毒软件一样实时更新 联接微软的认证服务器进行正版认证 以应对市面上的常用盗版破解方法 这意味着 当一种破解方法被广大盗版用户广泛采用时 它离被封杀也就不远了

因此 这次微软是真的打算将反盗版进行到底 目前 Win 7的各版本的参考价格如下

Windows 7 家庭普通版 399元

Windows 7 家庭高级版 699元

Windows 7 专业版 1399元

Windows 7 旗舰版 2460元

以目前的反响来看 受大多数用户青睐的是 Windows 7 家庭高级版 专业版和旗舰版这三个版本 因Windows 7 家庭普通版不支持Windows Aero特效以及创建家庭组等功能 因此并没有上述三个版本那样受宠

同时 微软也更正了原Vista系列中的命名规则 即Windows 7 Professional实则为原来的Business版本 对于一般用户而言 家庭高级版已经能够满足绝大多数用户的日常需求 而对于IT开发人员 建议使用专业版

【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究(Matlab代码实现)内容概要:本文围绕【Koopman】遍历论、动态模态分解和库普曼算子谱特性的计算研究展开,重点介绍基于Matlab的代码实现方法。文章系统阐述了遍历理论的基本概念、动态模态分解(DMD)的数学原理及其与库普曼算子谱特性之间的内在联系,展示了如何通过数值计算手段分析非线性动力系统的演化行为。文中提供了完整的Matlab代码示例,涵盖数据驱动的模态分解、谱分析及可视化过程,帮助读者理解并复现相关算法。同时,文档还列举了多个相关的科研方向和技术应用场景,体现出该方法在复杂系统建模与分析中的广泛适用性。; 适合人群:具备一定动力系统、线性代数与数值分析基础,熟悉Matlab编程,从事控制理论、流体力学、信号处理或数据驱动建模等领域研究的研究生、博士生及科研人员。; 使用场景及目标:①深入理解库普曼算子理论及其在非线性系统分析中的应用;②掌握动态模态分解(DMD)算法的实现与优化;③应用于流体动力学、气候建模、生物系统、电力系统等领域的时空模态提取与预测;④支撑高水平论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码逐段调试运行,对照理论推导加深理解;推荐参考文中提及的相关研究方向拓展应用场景;鼓励在实际数据上验证算法性能,并尝试改进与扩展算法功能。
本系统采用微信小程序作为前端交互界面,结合Spring Boot与Vue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性与扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理与数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试与优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性与可维护性,遵循企业级开发标准,确保了系统的长期稳定运行与后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
Table of Contents Introduction Model Summary Model Downloads Evaluation Results Chat Website & API Platform How to Run Locally License Citation Contact 1. Introduction We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. 2. Model Summary Architecture: Innovative Load Balancing Strategy and Training Objective On top of the efficient architecture of DeepSeek-V2, we pioneer an auxiliary-loss-free strategy for load balancing, which minimizes the performance degradation that arises from encouraging load balancing. We investigate a Multi-Token Prediction (MTP) objective and prove it beneficial to model performance. It can also be used for speculative decoding for inference acceleration. Pre-Training: Towards Ultimate Training Efficiency We design an FP8 mixed precision training framework and, for the first time, validate the feasibility and effectiveness of FP8 training on an extremely large-scale model. Through co-design of algorithms, frameworks, and hardware, we overcome the communication bottleneck in cross-node MoE training, nearly achieving full computation-communication overlap. This significantly enhances our training efficiency and reduces the training costs, enabling us to further scale up the model size without additional overhead. At an economical cost of only 2.664M H800 GPU hours, we complete the pre-training of DeepSeek-V3 on 14.8T tokens, producing the currently strongest open-source base model. The subsequent training stages after pre-training require only 0.1M GPU hours. Post-Training: Knowledge Distillation from DeepSeek-R1 We introduce an innovative methodology to distill reasoning capabilities from the long-Chain-of-Thought (CoT) model, specifically from one of the DeepSeek R1 series models, into standard LLMs, particularly DeepSeek-V3. Our pipeline elegantly incorporates the verification and reflection patterns of R1 into DeepSeek-V3 and notably improves its reasoning performance. Meanwhile, we also maintain a control over the output style and length of DeepSeek-V3. 3. Model Downloads Model #Total Params #Activated Params Context Length Download DeepSeek-V3-Base 671B 37B 128K 🤗 Hugging Face DeepSeek-V3 671B 37B 128K 🤗 Hugging Face Note The total size of DeepSeek-V3 models on Hugging Face is 685B, which includes 671B of the Main Model weights and 14B of the Multi-Token Prediction (MTP) Module weights. To ensure optimal performance and flexibility, we have partnered with open-source communities and hardware vendors to provide multiple ways to run the model locally. For step-by-step guidance, check out Section 6: How_to Run_Locally. For developers looking to dive deeper, we recommend exploring README_WEIGHTS.md for details on the Main Model weights and the Multi-Token Prediction (MTP) Modules. Please note that MTP support is currently under active development within the community, and we welcome your contributions and feedback. 4. Evaluation Results Base Model Standard Benchmarks Benchmark (Metric) # Shots DeepSeek-V2 Qwen2.5 72B LLaMA3.1 405B DeepSeek-V3 Architecture - MoE Dense Dense MoE # Activated Params - 21B 72B 405B 37B # Total Params - 236B 72B 405B 671B English Pile-test (BPB) - 0.606 0.638 0.542 0.548 BBH (EM) 3-shot 78.8 79.8 82.9 87.5 MMLU (Acc.) 5-shot 78.4 85.0 84.4 87.1 MMLU-Redux (Acc.) 5-shot 75.6 83.2 81.3 86.2 MMLU-Pro (Acc.) 5-shot 51.4 58.3 52.8 64.4 DROP (F1) 3-shot 80.4 80.6 86.0 89.0 ARC-Easy (Acc.) 25-shot 97.6 98.4 98.4 98.9 ARC-Challenge (Acc.) 25-shot 92.2 94.5 95.3 95.3 HellaSwag (Acc.) 10-shot 87.1 84.8 89.2 88.9 PIQA (Acc.) 0-shot 83.9 82.6 85.9 84.7 WinoGrande (Acc.) 5-shot 86.3 82.3 85.2 84.9 RACE-Middle (Acc.) 5-shot 73.1 68.1 74.2 67.1 RACE-High (Acc.) 5-shot 52.6 50.3 56.8 51.3 TriviaQA (EM) 5-shot 80.0 71.9 82.7 82.9 NaturalQuestions (EM) 5-shot 38.6 33.2 41.5 40.0 AGIEval (Acc.) 0-shot 57.5 75.8 60.6 79.6 Code HumanEval (Pass@1) 0-shot 43.3 53.0 54.9 65.2 MBPP (Pass@1) 3-shot 65.0 72.6 68.4 75.4 LiveCodeBench-Base (Pass@1) 3-shot 11.6 12.9 15.5 19.4 CRUXEval-I (Acc.) 2-shot 52.5 59.1 58.5 67.3 CRUXEval-O (Acc.) 2-shot 49.8 59.9 59.9 69.8 Math GSM8K (EM) 8-shot 81.6 88.3 83.5 89.3 MATH (EM) 4-shot 43.4 54.4 49.0 61.6 MGSM (EM) 8-shot 63.6 76.2 69.9 79.8 CMath (EM) 3-shot 78.7 84.5 77.3 90.7 Chinese CLUEWSC (EM) 5-shot 82.0 82.5 83.0 82.7 C-Eval (Acc.) 5-shot 81.4 89.2 72.5 90.1 CMMLU (Acc.) 5-shot 84.0 89.5 73.7 88.8 CMRC (EM) 1-shot 77.4 75.8 76.0 76.3 C3 (Acc.) 0-shot 77.4 76.7 79.7 78.6 CCPM (Acc.) 0-shot 93.0 88.5 78.6 92.0 Multilingual MMMLU-non-English (Acc.) 5-shot 64.0 74.8 73.8 79.4 Note Best results are shown in bold. Scores with a gap not exceeding 0.3 are considered to be at the same level. DeepSeek-V3 achieves the best performance on most benchmarks, especially on math and code tasks. For more evaluation details, please check our paper. Context Window Evaluation results on the Needle In A Haystack (NIAH) tests. DeepSeek-V3 performs well across all context window lengths up to 128K. Chat Model Standard Benchmarks (Models larger than 67B) Benchmark (Metric) DeepSeek V2-0506 DeepSeek V2.5-0905 Qwen2.5 72B-Inst. Llama3.1 405B-Inst. Claude-3.5-Sonnet-1022 GPT-4o 0513 DeepSeek V3 Architecture MoE MoE Dense Dense - - MoE # Activated Params 21B 21B 72B 405B - - 37B # Total Params 236B 236B 72B 405B - - 671B English MMLU (EM) 78.2 80.6 85.3 88.6 88.3 87.2 88.5 MMLU-Redux (EM) 77.9 80.3 85.6 86.2 88.9 88.0 89.1 MMLU-Pro (EM) 58.5 66.2 71.6 73.3 78.0 72.6 75.9 DROP (3-shot F1) 83.0 87.8 76.7 88.7 88.3 83.7 91.6 IF-Eval (Prompt Strict) 57.7 80.6 84.1 86.0 86.5 84.3 86.1 GPQA-Diamond (Pass@1) 35.3 41.3 49.0 51.1 65.0 49.9 59.1 SimpleQA (Correct) 9.0 10.2 9.1 17.1 28.4 38.2 24.9 FRAMES (Acc.) 66.9 65.4 69.8 70.0 72.5 80.5 73.3 LongBench v2 (Acc.) 31.6 35.4 39.4 36.1 41.0 48.1 48.7 Code HumanEval-Mul (Pass@1) 69.3 77.4 77.3 77.2 81.7 80.5 82.6 LiveCodeBench (Pass@1-COT) 18.8 29.2 31.1 28.4 36.3 33.4 40.5 LiveCodeBench (Pass@1) 20.3 28.4 28.7 30.1 32.8 34.2 37.6 Codeforces (Percentile) 17.5 35.6 24.8 25.3 20.3 23.6 51.6 SWE Verified (Resolved) - 22.6 23.8 24.5 50.8 38.8 42.0 Aider-Edit (Acc.) 60.3 71.6 65.4 63.9 84.2 72.9 79.7 Aider-Polyglot (Acc.) - 18.2 7.6 5.8 45.3 16.0 49.6 Math AIME 2024 (Pass@1) 4.6 16.7 23.3 23.3 16.0 9.3 39.2 MATH-500 (EM) 56.3 74.7 80.0 73.8 78.3 74.6 90.2 CNMO 2024 (Pass@1) 2.8 10.8 15.9 6.8 13.1 10.8 43.2 Chinese CLUEWSC (EM) 89.9 90.4 91.4 84.7 85.4 87.9 90.9 C-Eval (EM) 78.6 79.5 86.1 61.5 76.7 76.0 86.5 C-SimpleQA (Correct) 48.5 54.1 48.4 50.4 51.3 59.3 64.8 Note All models are evaluated in a configuration that limits the output length to 8K. Benchmarks containing fewer than 1000 samples are tested multiple times using varying temperature settings to derive robust final results. DeepSeek-V3 stands as the best-performing open-source model, and also exhibits competitive performance against frontier closed-source models. Open Ended Generation Evaluation Model Arena-Hard AlpacaEval 2.0 DeepSeek-V2.5-0905 76.2 50.5 Qwen2.5-72B-Instruct 81.2 49.1 LLaMA-3.1 405B 69.3 40.5 GPT-4o-0513 80.4 51.1 Claude-Sonnet-3.5-1022 85.2 52.0 DeepSeek-V3 85.5 70.0 Note English open-ended conversation evaluations. For AlpacaEval 2.0, we use the length-controlled win rate as the metric. 5. Chat Website & API Platform You can chat with DeepSeek-V3 on DeepSeek's official website: chat.deepseek.com We also provide OpenAI-Compatible API at DeepSeek Platform: platform.deepseek.com 6. How to Run Locally DeepSeek-V3 can be deployed locally using the following hardware and open-source community software: DeepSeek-Infer Demo: We provide a simple and lightweight demo for FP8 and BF16 inference. SGLang: Fully support the DeepSeek-V3 model in both BF16 and FP8 inference modes, with Multi-Token Prediction coming soon. LMDeploy: Enables efficient FP8 and BF16 inference for local and cloud deployment. TensorRT-LLM: Currently supports BF16 inference and INT4/8 quantization, with FP8 support coming soon. vLLM: Support DeepSeek-V3 model with FP8 and BF16 modes for tensor parallelism and pipeline parallelism. LightLLM: Supports efficient single-node or multi-node deployment for FP8 and BF16. AMD GPU: Enables running the DeepSeek-V3 model on AMD GPUs via SGLang in both BF16 and FP8 modes. Huawei Ascend NPU: Supports running DeepSeek-V3 on Huawei Ascend devices in both INT8 and BF16. Since FP8 training is natively adopted in our framework, we only provide FP8 weights. If you require BF16 weights for experimentation, you can use the provided conversion script to perform the transformation. Here is an example of converting FP8 weights to BF16: cd inference python fp8_cast_bf16.py --input-fp8-hf-path /path/to/fp8_weights --output-bf16-hf-path /path/to/bf16_weights Note Hugging Face's Transformers has not been directly supported yet. 6.1 Inference with DeepSeek-Infer Demo (example only) System Requirements Note Linux with Python 3.10 only. Mac and Windows are not supported. Dependencies: torch==2.4.1 triton==3.0.0 transformers==4.46.3 safetensors==0.4.5 Model Weights & Demo Code Preparation First, clone our DeepSeek-V3 GitHub repository: git clone https://github.com/deepseek-ai/DeepSeek-V3.git Navigate to the inference folder and install dependencies listed in requirements.txt. Easiest way is to use a package manager like conda or uv to create a new virtual environment and install the dependencies. cd DeepSeek-V3/inference pip install -r requirements.txt Download the model weights from Hugging Face, and put them into /path/to/DeepSeek-V3 folder. Model Weights Conversion Convert Hugging Face model weights to a specific format: python convert.py --hf-ckpt-path /path/to/DeepSeek-V3 --save-path /path/to/DeepSeek-V3-Demo --n-experts 256 --model-parallel 16 Run Then you can chat with DeepSeek-V3: torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --interactive --temperature 0.7 --max-new-tokens 200 Or batch inference on a given file: torchrun --nnodes 2 --nproc-per-node 8 --node-rank $RANK --master-addr $ADDR generate.py --ckpt-path /path/to/DeepSeek-V3-Demo --config configs/config_671B.json --input-file $FILE 6.2 Inference with SGLang (recommended) SGLang currently supports MLA optimizations, DP Attention, FP8 (W8A8), FP8 KV Cache, and Torch Compile, delivering state-of-the-art latency and throughput performance among open-source frameworks. Notably, SGLang v0.4.1 fully supports running DeepSeek-V3 on both NVIDIA and AMD GPUs, making it a highly versatile and robust solution. SGLang also supports multi-node tensor parallelism, enabling you to run this model on multiple network-connected machines. Multi-Token Prediction (MTP) is in development, and progress can be tracked in the optimization plan. Here are the launch instructions from the SGLang team: https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3 6.3 Inference with LMDeploy (recommended) LMDeploy, a flexible and high-performance inference and serving framework tailored for large language models, now supports DeepSeek-V3. It offers both offline pipeline processing and online deployment capabilities, seamlessly integrating with PyTorch-based workflows. For comprehensive step-by-step instructions on running DeepSeek-V3 with LMDeploy, please refer to here: InternLM/lmdeploy#2960 6.4 Inference with TRT-LLM (recommended) TensorRT-LLM now supports the DeepSeek-V3 model, offering precision options such as BF16 and INT4/INT8 weight-only. Support for FP8 is currently in progress and will be released soon. You can access the custom branch of TRTLLM specifically for DeepSeek-V3 support through the following link to experience the new features directly: https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/deepseek_v3. 6.5 Inference with vLLM (recommended) vLLM v0.6.6 supports DeepSeek-V3 inference for FP8 and BF16 modes on both NVIDIA and AMD GPUs. Aside from standard techniques, vLLM offers pipeline parallelism allowing you to run this model on multiple machines connected by networks. For detailed guidance, please refer to the vLLM instructions. Please feel free to follow the enhancement plan as well. 6.6 Inference with LightLLM (recommended) LightLLM v1.0.1 supports single-machine and multi-machine tensor parallel deployment for DeepSeek-R1 (FP8/BF16) and provides mixed-precision deployment, with more quantization modes continuously integrated. For more details, please refer to LightLLM instructions. Additionally, LightLLM offers PD-disaggregation deployment for DeepSeek-V2, and the implementation of PD-disaggregation for DeepSeek-V3 is in development. 6.7 Recommended Inference Functionality with AMD GPUs In collaboration with the AMD team, we have achieved Day-One support for AMD GPUs using SGLang, with full compatibility for both FP8 and BF16 precision. For detailed guidance, please refer to the SGLang instructions. 6.8 Recommended Inference Functionality with Huawei Ascend NPUs The MindIE framework from the Huawei Ascend community has successfully adapted the BF16 version of DeepSeek-V3. For step-by-step guidance on Ascend NPUs, please follow the instructions here. 7. License This code repository is licensed under the MIT License. The use of DeepSeek-V3 Base/Chat models is subject to the Model License. DeepSeek-V3 series (including Base and Chat) supports commercial use. 8. Citation @misc{deepseekai2024deepseekv3technicalreport, title={DeepSeek-V3 Technical Report}, author={DeepSeek-AI}, year={2024}, eprint={2412.19437}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.19437}, } 9. Contact If you have any questions, please raise an issue or contact us at service@deepseek.com.
07-12
### 本地部署 DeepSeek 模型并接入 PyCharm 实现 AI 编程的完整指南 #### 1. 安装 PyCharm PyCharm 是一款广泛使用的 Python 开发工具,支持专业版(Professional)和社区版(Community)。用户可以从 [PyCharm 官网](https://www.jetbrains.com/pycharm/) 下载安装包,并根据操作系统选择合适的版本进行安装。安装完成后,启动 PyCharm 并创建一个 Python 项目。 #### 2. 安装 Ollama Ollama 是一个用于在本地运行大语言模型的工具。访问 [Ollama 官网](https://ollama.com/download) 下载适用于 Windows 或 Linux 的安装包。对于 Linux 用户,可以使用以下命令下载并解压: ```bash curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz sudo tar -C /usr -xzf ollama-linux-amd64.tgz ``` 如果网络不稳定,可以直接从浏览器下载安装包并上传至服务器后解压。解压完成后,通过 `ollama serve` 启动服务,并使用 `ollama -v` 验证是否成功运行[^1]。 为了确保每次系统重启后 Ollama 自动启动,可以将其配置为 systemd 服务。创建用户和组后,在 `/etc/systemd/system/ollama.service` 中添加以下内容: ```ini [Unit] Description=Ollama Service After=network-online.target [Service] ExecStart=/usr/bin/ollama serve User=ollama Group=ollama Restart=always RestartSec=3 Environment="PATH=$PATH" [Install] WantedBy=default.target ``` 保存后重新加载 systemd 配置并启用服务: ```bash sudo systemctl daemon-reload sudo systemctl start ollama.service sudo systemctl enable ollama.service ``` #### 3. 下载 DeepSeek 模型 通过 Ollama 命令行下载 DeepSeek 模型,例如 `deepseek-r1:1.5b` 或 `deepseek-r1:7b`: ```bash ollama run deepseek-r1:1.5b ollama run deepseek-r1:7b ``` 模型默认存储路径如下: - macOS: `~/.ollama/models` - Linux: `/usr/share/ollama/.ollama/models` - Windows: `C:\Users\%username%\.ollama\models` 下载完成后,可以在命令行中验证模型是否正常运行。 #### 4. 在 PyCharm 中集成 DeepSeek 模型 ##### 4.1 安装 Proxy AI 插件 打开 PyCharm,进入 **Settings → Plugins**,搜索 "Proxy AI" 并安装插件(注意选择下载量超过 1 万的官方插件)[^2]。安装完成后,重启 PyCharm。 ##### 4.2 配置 Ollama 服务 进入 **Settings → Tools → CodeGPT → Providers**,添加一个新的 Provider,选择 Ollama(Local),填写以下信息: - **API Endpoint**: `http://localhost:11434/api/generate` - **Model**: `deepseek-r1:7b` (与本地部署的模型版本一致) - **API Key**: 留空(因为是本地服务) 点击 **Test Connection** 验证连接是否成功。 ##### 4.3 设置提示词模板 在 **Prompts** 板块中,可以编辑提示词模板以适配 DeepSeek 模型。例如: ```text You are an AI programming assistant, based on the DeepSeek model. Please provide suggestions for code completion and optimization. ``` ##### 4.4 配置模型参数 进入 **Configuration** 板块,设置模型参数: - **Model**: `deepseek-coder` - **Temperature**: `0.7` (控制生成文本的随机性) - **Max Tokens**: `2048` (单次响应的最大长度) #### 5. 使用 DeepSeek 进行 AI 编程 完成上述配置后,可以在 PyCharm 中编写代码时使用 DeepSeek 提供的智能建议。尝试输入部分代码,查看插件是否能提供合适的补全或优化建议。DeepSeek 模型的响应时间通常在 1~2 秒之间,适合快速交互式编程[^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值