为什么2007年的图灵奖选择了模型检测技术

本文介绍了2007年图灵奖授予EdmundM.Clarke、EAllenEmerson和JosephSifakis的原因,表彰他们在模型检测技术领域的奠基性贡献。模型检测技术是一种用于验证硬件和软件设计是否符合规格说明的方法。

为什么2007年的图灵奖选择了模型检测技术
像树一样成长,刚听完俞敏洪的在赢在中国的演讲----------题记

2007年图灵奖授予了在模型检测技术领域的奠基性贡献的科学家:Edmund M. Clarke、E Allen Emerson和Joseph Sifakis三位科学家。

什么是模型检测技术呢? 看看wikipedia 上的定义吧:
Model checking is the process of checking whether a given structure is a model of a given logical formula. The concept is general and applies to all kinds of logics and suitable structures. A simple model-checking problem is testing whether a given formula in the propositional logic is satisfied by a given structure.

简单的说:是一套用于判断硬件和软件设计的理论模型是否满足规范的方法。这可真是个抽象的描述,看起来似乎离我们很遥远,遥远的只有像英特尔研究中心副总裁Andrew Chien才能对模型检测技术用一句话来评价:“英特尔和整个计算机工业都从他们的贡献中直接获益”。

那模型检测技术是不是离程序员也很遥远呢?图灵奖作为计算机界诺贝尔奖,如果把奖项颁给一个离程序员很遥远的技术,还真说不过去。

带着这个疑问,我浏览了wikipedia上长长的一窜模型检测技术的项目,还好不出所料,找到了下面几个项目:

1、Java Pathfinder :是一个用来认证java执行字节代码的系统。类似一个java虚拟机用来检测软件运行状态的验证系统。
2、Mono Model Checker :跑在mono 开源的.net平台上。用来自动侦查 CIL 字节码错误的程序。目前的版本支持CIL的死锁 deadlocks 和 断言冲突 assertion violation 。

3、对于c++ 感兴趣的人还可以看看这两个项目:
State Exploring Assembly Model CheckerBounded Model Checking for ANSI-C

举个例子吧,在开发中,利用测试库junit 和 dotunit 写测试代码已经逐渐普及开了,比如下面这段:
 
注意上面加黑的这句: assert( (toppings.size()==0) );

这段代码我们用来检测:pizza.getToppings() 的大小是否为0。那么模型检测和上面的测试代码有什么不同呢?

不同点在于:现在的测试库用来判断结果 , 而模型检测用来判断过程(逻辑)是否符合要求。

我们常说,不但要关注结果,更要关注过程。模型检测就是对过程的关注。

无疑,现在写程序的时候,模型检测的过程,是由广大程序员完成的。如果这个过程可以由机器完成的话?那不是就是实现了自动编程吗?据说word的创始人开发者正在干这样的事儿... ,不知道这个老头有生之年能不能实现他的理想。

当然,我也相信在更高级的人工智能技术中,模型检测技术会大展拳脚。

又是个遥远的事情,洗洗睡吧。

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值