题目的Link在这里:ACM UVa 507 - Jill Rides Again
本质上来说,本题是一个Maximum Interval Sum问题,也就是求最大连续序列。一般的做法需要o(n^2)的时间,其实有一个简单的O(n)复杂度的解法:
从左到右逐步累加,记录每次累加之后的最大值,假如累加值<0,则将累加值清0,重新累加。当这个过程结束之后所记录的最大值就是最大的连续序列的累加值。因为只需要从左到右扫描一次,因此算法的复杂度为O(n)
直观来说,这样做把整个序列分为(A1, n1), (A2, n2)....(Am, nm)的序列。Ak是一串长度为w的序列a(1), a(2), ...a(w)其中a(1)+...+a(p) > 0对于任意0<p<=w。nk则是一个负数并且Ak+nk<0。这样,直观上来说,nk变成了各个序列的边界,每个序列不应该越过边界否则会导致序列的总和变小。因此最大的序列在A1, ... Am中(包括子序列),于是此算法可以得到最大值。
举例:
Seq=1, 2, -4, 9, -4, -7, 1, 4, 5, -2
Sum=1, 3, -1(清0), 9, 5, -2(清0), 1, 5,10, 7
所以最大的连续序列为1, 4, 5,其和为10。
代码如下:




































































































