UML类图几种关系的总结

 

在UML类图中,常见的有以下几种关系: 泛化(Generalization), 实现(Realization),关联(Association),聚合(Aggregation),组合(Composition),依赖(Dependency)

 

1. 泛化(Generalization

 

【泛化关系】:是一种继承关系,表示一般与特殊的关系,它指定了子类如何特化父类的所有特征和行为。例如:老虎是动物的一种,即有老虎的特性也有动物的共性。

 

【箭头指向】:带三角箭头的实线,箭头指向父类

 

UML类图几种关系的总结

 

2. 实现(Realization

 

【实现关系】:是一种类与接口的关系,表示类是接口所有特征和行为的实现.

 

【箭头指向】:带三角箭头的虚线,箭头指向接口

 

UML类图几种关系的总结

 

3. 关联(Association)

 

【关联关系】:是一种拥有的关系,它使一个类知道另一个类的属性和方法;如:老师与学生,丈夫与妻子关联可以是双向的,也可以是单向的。双向的关联可以有两个箭头或者没有箭头,单向的关联有一个箭头。

 

【代码体现】:成员变量

 

【箭头及指向】:带普通箭头的实心线,指向被拥有者

 

UML类图几种关系的总结

 

上图中,老师与学生是双向关联,老师有多名学生,学生也可能有多名老师。但学生与某课程间的关系为单向关联,一名学生可能要上多门课程,课程是个抽象的东西他不拥有学生。

 

下图为自身关联:

 

UML类图几种关系的总结

 

4. 聚合(Aggregation

 

【聚合关系】:是整体与部分的关系,且部分可以离开整体而单独存在。如车和轮胎是整体和部分的关系,轮胎离开车仍然可以存在。

 

聚合关系是关联关系的一种,是强的关联关系;关联和聚合在语法上无法区分,必须考察具体的逻辑关系。

 

【代码体现】:成员变量

 

【箭头及指向】:带空心菱形的实心线,菱形指向整体

 

UML类图几种关系的总结

 

5.组合(Composition)

 

【组合关系】:是整体与部分的关系,但部分不能离开整体而单独存在。如公司和部门是整体和部分的关系,没有公司就不存在部门。

 

组合关系是关联关系的一种,是比聚合关系还要强的关系,它要求普通的聚合关系中代表整体的对象负责代表部分的对象的生命周期。

 

【代码体现】:成员变量

 

【箭头及指向】:带实心菱形的实线,菱形指向整体

 

UML类图几种关系的总结

 

6. 依赖(Dependency)

 

【依赖关系】:是一种使用的关系,即一个类的实现需要另一个类的协助,所以要尽量不使用双向的互相依赖.

 

【代码表现】:局部变量、方法的参数或者对静态方法的调用

 

【箭头及指向】:带箭头的虚线,指向被使用者

 

UML类图几种关系的总结

 

各种关系的强弱顺序:

 

泛化 = 实现 > 组合 > 聚合 > 关联 > 依赖

 

下面这张UML图,比较形象地展示了各种类图关系:

 

UML类图几种关系的总结

转自:http://blog.youkuaiyun.com/tianhai110/article/details/6339565

【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制实现有限时间内的共识,并提供了相应的Matlab代码实现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程实用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和实现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开,重点研究其动力学建模与控制系统设计。通过Matlab代码与Simulink仿真实现,详细阐述了该无人机的运动学与动力学模型构建过程,分析了螺旋桨倾斜机构如何提升无人机的全向机动能力与姿态控制性能,并设计相应的控制策略以实现稳定飞行与精确轨迹跟踪。文中涵盖了从系统建模、控制器设计到仿真验证的完整流程,突出了全驱动结构相较于传统四旋翼在欠驱动问题上的优势。; 适合人群:具备一定控制理论基础和Matlab/Simulink使用经验的自动化、航空航天及相关专业的研究生、科研人员或无人机开发工程师。; 使用场景及目标:①学习全驱动四旋翼无人机的动力学建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真技术;③深入理解螺旋桨倾斜机构对飞行性能的影响及其控制实现;④为相关课题研究或工程开发提供可复现的技术参考与代码支持。; 阅读建议:建议读者结合提供的Matlab代码与Simulink模型,逐步跟进文档中的建模与控制设计步骤,动手实践仿真过程,以加深对全驱动无人机控制原理的理解,并可根据实际需求对模型与控制器进行修改与优化。
### UML 中的关系及其代码实现 #### 继承 (Inheritance) 继承表示一种 "is-a" 的关系,在 Python 中可以通过 `class` 定义来体现这种父子之间的关联。 ```python class Animal: def speak(self): pass class Dog(Animal): # Dog is an Animal def speak(self): return "Woof!" ``` 子可以重写父的方法并调用其属性[^1]。 #### 聚合 (Aggregation) 聚合是一种弱的 “has-a” 关系,意味着整体对象拥有部分对象但是不控制它们的生命期。这通常通过组合实例变量完成: ```python class Department: def __init__(self, name): self.name = name self.employees = [] class Employee: def __init__(self, id, department=None): self.id = id self.department = department hr_dept = Department('HR') emp1 = Employee(101, hr_dept) print(emp1.department.name) # 输出 'HR' ``` 这里员工可以在创建时被分配给部门,也可以之后再设置所属部门[^2]。 #### 组合 (Composition) 组合也是一种强形式的 “has-a”,它暗示着当容器对象消失时组件也会随之销毁。Python 中可通过初始化参数传递依赖项: ```python from datetime import date class Address: def __init__(self, street, city): self.street = street self.city = city class Person: def __init__(self, name, birth_date, address_info): self.name = name self.birth_date = birth_date self.address = Address(*address_info) person = Person("Alice", date.today(), ("Main St.", "Wonderland")) del person # 当删除Person对象时Address也被自动清理 ``` 此例子展示了地址作为人的组成部分而存在;如果人不存在,则该特定住址也无意义[^3]。 #### 关联 (Association) 两个独立实体之间简单的双向或多向联系称为关联。此连接可能涉及多个角色或方向上的导航权限。 ```python class Teacher: def teach(self): print(f"{self} teaches.") class Student: teacher = None @classmethod def set_teacher(cls, tchr): cls.teacher = tchr t = Teacher() Student.set_teacher(t) s = Student() if s.teacher: s.teacher.teach() # 可能会打印出教师教课的信息 ``` 在这个场景下,学生和老师相互作用但彼此间并没有所有权的概念[^4]。 #### 依赖 (Dependency) 依赖是指一个使用另一个的服务或接口的情况,通常是临时性的交互而不是长期持有对方引用。 ```python def send_email(email_service, recipient, message): email_service.send(recipient=recipient, content=message) class EmailService: def send(self, **kwargs): print(f'Sending "{kwargs["content"]}" to {kwargs["recipient"]}.') email_svc = EmailService() send_email(email_svc, "example@example.com", "Hello!") ``` 函数 `send_email()` 对象仅在其内部短暂地利用到了邮件服务的功能[^5]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值