Mobile Graded Browser Support

From http://jquerymobile.com/gbs/

 

Mobile Graded Browser Support

Yahoo has one of the best overall strategies regarding desktop browser web development with their graded browser support chart. They break down browsers into various levels: A-grade browsers get the full experience (JavaScript, CSS, etc.), C-grade browsers get no JavaScript or CSS, and everything else gets the idealized A-grade level of functionality (assuming that it’s simply a browser that’s not known about).

Compared to mobile web development, the potential browser choices in desktop web development seems downright simple. In mobile development there are more engines, on more platforms, and with more active versions of the browsers.

When we look at the major browsers that are available, we need to figure out what platforms they’re running on and what versions of those browsers work well-enough to support.

jQuery core is working to support all A and B grade browsers.

Mobile Graded Browser Support
PlatformVersionNativeOpera MobileOpera MiniFennecOzoneNetfrontPhonegap
8.58.659.510.04.05.01.01.10.94.00.9
iOS v2.2.1 BB
v3.1.3 , v3.2 ACA
v4.0 ACA
Symbian S60 v3.1, v3.2 BCCACCCC
v5.0 ACCACCA
Symbian UIQ v3.0, v3.1 CC
v3.2 CC
Symbian Platform 3.0 A
Blackbery OS v4.5 FCC
v4.6 , v4.7 BCCA
v5.0 BCCA
v6.0 ACC
Android v1.5 AA
v1.6 AA
v2.1 AA
v2.2 AACAA
Windows Mobile v6.1 FCCBBCCC
v6.5.1 BCCBACC
v7.0 BACC
webOS 1.4.1 AA
bada 1.0 A
Maemo 5.0CBCB
MeeGo 1.1AAA

What do the grades mean? The grades are a combination of the browser quality combined with the browser’s relevance in the larger mobile market. Generally speaking we break down the grades in this manner:

Key:

  • A High Quality. A high quality browser with notable market share. A must-target for a mobile web developer.
  • B Medium Quality. Either a lower quality browser with high market share or a high quality browser with low market share. Depending upon your capabilities you should work to support these browsers, as well.
  • C Low Quality. Typically an extremely low quality browser with high market share. Generally not capable of running modern JavaScript or DOM code.
  • F Failing. A barely-functioning browser. Even though it has some market share you should avoid developing for it completely.
  • Upcoming browser. This browser is not yet released but is in alpha/beta testing.

More information about the particular platforms, browsers, and versions is forthcoming. In the meantime, you can read through a recent presentation about the challenges crossed when testing mobile JavaScript, by John Resig:

Sponsored by Media Temple , Mobile Project Sponsors and Others .

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js"></script><!-- <script src="http://cdn.jquery.net/mobile/wp-content/themes/jquery-mobile/js/site.js"></script> --><script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-1076265-1']); _gaq.push(['_trackPageview']); _gaq.push(['_setDomainName', '.jquerymobile.com']); (function() {var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(ga);})(); </script><!-- Dynamic page generated in 0.290 seconds. --><!-- Cached page generated by WP-Super-Cache on 2010-08-16 14:07:53 --><!-- super cache --><script src="http://b.scorecardresearch.com/beacon.js?c1=7&amp;c2=7400849&amp;c3=1&amp;c4=&amp;c5=&amp;c6="></script>
内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值