Description has only two Sentences
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 199Accepted Submission(s): 9
Total Submission(s): 199Accepted Submission(s): 9
Problem Description
an= X*an-1+
Y and Y mod (X-1) = 0.
Your task is to calculate the smallest positive integer k that akmod a0= 0.
Your task is to calculate the smallest positive integer k that akmod a0= 0.
Input
Each line will contain only three integers X, Y, a0( 1 < X < 231,
0 <= Y < 263, 0 < a0<
231).
Output
For each case, output the answer in one line, if there is no such k, output "Impossible!".
SampleInput
2 0 9
SampleOutput
1
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int d[1000000];
typedef long long ll;
ll euler(ll n)
{
ll i,ans = n,t = n;
for( i = 2 ; i * i <= n ;i++ )
if( t%i == 0) {
ans -= ans/i;
while( t%i == 0) t /= i;
}
if( t > 1) ans -= ans/t;
return ans;
}
ll gcd(ll a,ll b)
{
return b?gcd(b, a%b):a;
}
ll fast_pow(ll a,ll b,ll c) //a^b%c
{
ll tmp=a%c,res=1;
while (b) {
if(b&1) res =res*tmp%c;
tmp=tmp*tmp%c;
b>>=1;
}
return res;
}
int main()
{
ll x,y,a;
while (cin>>x>>y>>a) {
ll k=y/(x-1);
if(k==0) {cout<<"1"<<endl;continue;}//这儿也可以不特判,写的时候是因为快速幂写错WA了以后乱加的
ll tmp=gcd(a,k);
if(gcd(a/tmp, x)!=1){ cout<<"Impossible!"<<endl;continue;};
ll res=euler(a/tmp),cnt=0;
for(int i=1;i*i<=res;i++)
{
if(res%i==0)
{
d[cnt++]=i;
if(res/i!=i)d[cnt++]=res/i;
}
}
sort(d,d+cnt);
for(int i=0;i<cnt;i++)
{
if(fast_pow(x, d[i],a/tmp)==1)
{
cout<<d[i]<<endl;
break;
}
}
}
return 0;
}
(x^k-1)*(y/(x-1))=0(mod a0),再将(y/(x-1))和a0先消掉公因数,就是要求最小k满足x^k=1(mod m)

(x^k-1)*(y/(x-1))=0(mod a0),再将(y/(x-1))和a0先消掉公因数,就是要求最小k满足x^k=1(mod m)
k^euler(m)=1(modm),找euler(m)的因数中能满足k^x=1(mod m)的最小x(快速幂)
循环节:a^b=a^(b+t) (mod c) -> a^t=1(mod c) -> 满足a^x=1(mod c) 则 x=t*k;(抽屉原理)
euler: a^euler=1(mod c)
euler: a^euler=1(mod c)
好像也可以用什么离散对数做,反正我不知道那东东