2007 -> 2008

新的一年,做个非常简单的总结。
过去的一年:从生活上来说,结婚了,买房了,生活开始步入正轨了;从工作上来说,也算比较成功的,除了技术上的提高,公司规范的流程也让我学到很多,自我感觉已经算是一个优秀的项目负责人了,呵呵。
未来的一年:技术的发展太快,东西永远学不完,所以还是在项目管理方面多积累经验,多多向前辈学习;如果有可能,接触个J2EE的项目(可能性不大,看公司);练习英语口语。
/* * Copyright (C) 2007 Ubiquiti Networks, Inc. * Copyright (C) 2008 Lukas Kuna <ValXdater@seznam.cz> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <string.h> #include <errno.h> #include <zlib.h> #include <sys/mman.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <limits.h> #include "fw.h" typedef struct fw_layout_data { char name[PATH_MAX]; u_int32_t kern_start; u_int32_t kern_entry; u_int32_t firmware_max_length; } fw_layout_t; fw_layout_t fw_layout_data[] = { { .name = "XS2", .kern_start = 0xbfc30000, .kern_entry = 0x80041000, .firmware_max_length= 0x00390000, }, { .name = "XS5", .kern_start = 0xbe030000, .kern_entry = 0x80041000, .firmware_max_length= 0x00390000, }, { .name = "RS", .kern_start = 0xbf030000, .kern_entry = 0x80060000, .firmware_max_length= 0x00B00000, }, { .name = "RSPRO", .kern_start = 0xbf030000, .kern_entry = 0x80060000, .firmware_max_length= 0x00B00000, }, { .name = "LS-SR71", .kern_start = 0xbf030000, .kern_entry = 0x80060000, .firmware_max_length= 0x00640000, }, { .name = "XS2-8", .kern_start = 0xa8030000, .kern_entry = 0x80041000, .firmware_max_length= 0x006C0000, }, { .name = "XM", .kern_start = 0x9f050000, .kern_entry = 0x80002000, .firmware_max_length= 0x006A0000, }, { .name = "", }, }; typedef struct part_data { char partition_name[64]; int partition_index; u_int32_t partition_baseaddr; u_int32_t partition_startaddr; u_int32_t partition_memaddr; u_int32_t partition_entryaddr; u_int32_t partition_length; char filename[PATH_MAX]; struct stat stats; } part_data_t; #define MAX_SECTIONS 8 #define DEFAULT_OUTPUT_FILE "firmware-image.bin" #define DEFAULT_VERSION "UNKNOWN" #define OPTIONS "B:hv:m:o:r:k:" static int debug = 0; typedef struct image_info { char magic[16]; char version[256]; char outputfile[PATH_MAX]; u_int32_t part_count; part_data_t parts[MAX_SECTIONS]; } image_info_t; static void write_header(void* mem, const char *magic, const char* version) { header_t* header = mem; memset(header, 0, sizeof(header_t)); memcpy(header->magic, magic, MAGIC_LENGTH); strncpy(header->version, version, sizeof(header->version)); header->crc = htonl(crc32(0L, (unsigned char *)header, sizeof(header_t) - 2 * sizeof(u_int32_t))); header->pad = 0L; } static void write_signature(void* mem, u_int32_t sig_offset) { /* write signature */ signature_t* sign = (signature_t*)(mem + sig_offset); memset(sign, 0, sizeof(signature_t)); memcpy(sign->magic, MAGIC_END, MAGIC_LENGTH); sign->crc = htonl(crc32(0L,(unsigned char *)mem, sig_offset)); sign->pad = 0L; } static int write_part(void* mem, part_data_t* d) { char* addr; int fd; part_t* p = mem; part_crc_t* crc = mem + sizeof(part_t) + d->stats.st_size; fd = open(d->filename, O_RDONLY); if (fd < 0) { ERROR("Failed opening file '%s'\n", d->filename); return -1; } if ((addr=(char*)mmap(0, d->stats.st_size, PROT_READ, MAP_SHARED, fd, 0)) == MAP_FAILED) { ERROR("Failed mmaping memory for file '%s'\n", d->filename); close(fd); return -2; } memcpy(mem + sizeof(part_t), addr, d->stats.st_size); munmap(addr, d->stats.st_size); memset(p->name, 0, sizeof(p->name)); strncpy(p->magic, MAGIC_PART, MAGIC_LENGTH); strncpy(p->name, d->partition_name, sizeof(p->name)); p->index = htonl(d->partition_index); p->data_size = htonl(d->stats.st_size); p->part_size = htonl(d->partition_length); p->baseaddr = htonl(d->partition_baseaddr); p->memaddr = htonl(d->partition_memaddr); p->entryaddr = htonl(d->partition_entryaddr); crc->crc = htonl(crc32(0L, mem, d->stats.st_size + sizeof(part_t))); crc->pad = 0L; return 0; } static void usage(const char* progname) { INFO("Version %s\n" "Usage: %s [options]\n" "\t-v <version string>\t - firmware version information, default: %s\n" "\t-o <output file>\t - firmware output file, default: %s\n" "\t-m <magic>\t - firmware magic, default: %s\n" "\t-k <kernel file>\t\t - kernel file\n" "\t-r <rootfs file>\t\t - rootfs file\n" "\t-B <board name>\t\t - choose firmware layout for specified board (XS2, XS5, RS, XM)\n" "\t-h\t\t\t - this help\n", VERSION, progname, DEFAULT_VERSION, DEFAULT_OUTPUT_FILE, MAGIC_HEADER); } static void print_image_info(const image_info_t* im) { int i = 0; INFO("Firmware version: '%s'\n" "Output file: '%s'\n" "Part count: %u\n", im->version, im->outputfile, im->part_count); for (i = 0; i < im->part_count; ++i) { const part_data_t* d = &im->parts[i]; INFO(" %10s: %8ld bytes (free: %8ld)\n", d->partition_name, d->stats.st_size, d->partition_length - d->stats.st_size); } } static u_int32_t filelength(const char* file) { FILE *p; int ret = -1; if ( (p = fopen(file, "rb") ) == NULL) return (-1); fseek(p, 0, SEEK_END); ret = ftell(p); fclose (p); return (ret); } static int create_image_layout(const char* kernelfile, const char* rootfsfile, char* board_name, image_info_t* im) { part_data_t* kernel = &im->parts[0]; part_data_t* rootfs = &im->parts[1]; fw_layout_t* p; p = &fw_layout_data[0]; while ((strlen(p->name) != 0) && (strncmp(p->name, board_name, sizeof(board_name)) != 0)) p++; if (p->name == NULL) { printf("BUG! Unable to find default fw layout!\n"); exit(-1); } printf("board = %s\n", p->name); strcpy(kernel->partition_name, "kernel"); kernel->partition_index = 1; kernel->partition_baseaddr = p->kern_start; if ( (kernel->partition_length = filelength(kernelfile)) < 0) return (-1); kernel->partition_memaddr = p->kern_entry; kernel->partition_entryaddr = p->kern_entry; strncpy(kernel->filename, kernelfile, sizeof(kernel->filename)); if (filelength(rootfsfile) + kernel->partition_length > p->firmware_max_length) return (-2); strcpy(rootfs->partition_name, "rootfs"); rootfs->partition_index = 2; rootfs->partition_baseaddr = kernel->partition_baseaddr + kernel->partition_length; rootfs->partition_length = p->firmware_max_length - kernel->partition_length; rootfs->partition_memaddr = 0x00000000; rootfs->partition_entryaddr = 0x00000000; strncpy(rootfs->filename, rootfsfile, sizeof(rootfs->filename)); printf("kernel: %d 0x%08x\n", kernel->partition_length, kernel->partition_baseaddr); printf("root: %d 0x%08x\n", rootfs->partition_length, rootfs->partition_baseaddr); im->part_count = 2; return 0; } /** * Checks the availability and validity of all image components. * Fills in stats member of the part_data structure. */ static int validate_image_layout(image_info_t* im) { int i; if (im->part_count == 0 || im->part_count > MAX_SECTIONS) { ERROR("Invalid part count '%d'\n", im->part_count); return -1; } for (i = 0; i < im->part_count; ++i) { part_data_t* d = &im->parts[i]; int len = strlen(d->partition_name); if (len == 0 || len > 16) { ERROR("Invalid partition name '%s' of the part %d\n", d->partition_name, i); return -1; } if (stat(d->filename, &d->stats) < 0) { ERROR("Couldn't stat file '%s' from part '%s'\n", d->filename, d->partition_name); return -2; } if (d->stats.st_size == 0) { ERROR("File '%s' from part '%s' is empty!\n", d->filename, d->partition_name); return -3; } if (d->stats.st_size > d->partition_length) { ERROR("File '%s' too big (%d) - max size: 0x%08X (exceeds %lu bytes)\n", d->filename, i, d->partition_length, d->stats.st_size - d->partition_length); return -4; } } return 0; } static int build_image(image_info_t* im) { char* mem; char* ptr; u_int32_t mem_size; FILE* f; int i; // build in-memory buffer mem_size = sizeof(header_t) + sizeof(signature_t); for (i = 0; i < im->part_count; ++i) { part_data_t* d = &im->parts[i]; mem_size += sizeof(part_t) + d->stats.st_size + sizeof(part_crc_t); } mem = (char*)calloc(mem_size, 1); if (mem == NULL) { ERROR("Cannot allocate memory chunk of size '%u'\n", mem_size); return -1; } // write header write_header(mem, im->magic, im->version); ptr = mem + sizeof(header_t); // write all parts for (i = 0; i < im->part_count; ++i) { part_data_t* d = &im->parts[i]; int rc; if ((rc = write_part(ptr, d)) != 0) { ERROR("ERROR: failed writing part %u '%s'\n", i, d->partition_name); } ptr += sizeof(part_t) + d->stats.st_size + sizeof(part_crc_t); } // write signature write_signature(mem, mem_size - sizeof(signature_t)); // write in-memory buffer into file if ((f = fopen(im->outputfile, "w")) == NULL) { ERROR("Can not create output file: '%s'\n", im->outputfile); return -10; } if (fwrite(mem, mem_size, 1, f) != 1) { ERROR("Could not write %d bytes into file: '%s'\n", mem_size, im->outputfile); return -11; } free(mem); fclose(f); return 0; } int main(int argc, char* argv[]) { char kernelfile[PATH_MAX]; char rootfsfile[PATH_MAX]; char board_name[PATH_MAX]; int o, rc; image_info_t im; memset(&im, 0, sizeof(im)); memset(kernelfile, 0, sizeof(kernelfile)); memset(rootfsfile, 0, sizeof(rootfsfile)); memset(board_name, 0, sizeof(board_name)); strcpy(im.outputfile, DEFAULT_OUTPUT_FILE); strcpy(im.version, DEFAULT_VERSION); strncpy(im.magic, MAGIC_HEADER, sizeof(im.magic)); while ((o = getopt(argc, argv, OPTIONS)) != -1) { switch (o) { case 'v': if (optarg) strncpy(im.version, optarg, sizeof(im.version)); break; case 'o': if (optarg) strncpy(im.outputfile, optarg, sizeof(im.outputfile)); break; case 'm': if (optarg) strncpy(im.magic, optarg, sizeof(im.magic)); break; case 'h': usage(argv[0]); return -1; case 'k': if (optarg) strncpy(kernelfile, optarg, sizeof(kernelfile)); break; case 'r': if (optarg) strncpy(rootfsfile, optarg, sizeof(rootfsfile)); break; case 'B': if (optarg) strncpy(board_name, optarg, sizeof(board_name)); break; } } if (strlen(board_name) == 0) strcpy(board_name, "XS2"); /* default to XS2 */ if (strlen(kernelfile) == 0) { ERROR("Kernel file is not specified, cannot continue\n"); usage(argv[0]); return -2; } if (strlen(rootfsfile) == 0) { ERROR("Root FS file is not specified, cannot continue\n"); usage(argv[0]); return -2; } if ((rc = create_image_layout(kernelfile, rootfsfile, board_name, &im)) != 0) { ERROR("Failed creating firmware layout description - error code: %d\n", rc); return -3; } if ((rc = validate_image_layout(&im)) != 0) { ERROR("Failed validating firmware layout - error code: %d\n", rc); return -4; } print_image_info(&im); if ((rc = build_image(&im)) != 0) { ERROR("Failed building image file '%s' - error code: %d\n", im.outputfile, rc); return -5; } return 0; }
10-30
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
为什么我这个代码现在在按下reset键后因为非法内存访问错误导致系统重启? /* * GPIO Button Hotplug driver * * Copyright (C) 2012 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2008-2010 Gabor Juhos <juhosg@openwrt.org> * * Based on the diag.c - GPIO interface driver for Broadcom boards * Copyright (C) 2006 Mike Baker <mbm@openwrt.org>, * Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2008 Andy Boyett <agb@openwrt.org> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. */ #include <linux/module.h> #include <linux/version.h> #include <linux/kmod.h> #include <linux/workqueue.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/kobject.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/of_gpio.h> #include <linux/gpio_keys.h> #include <net/sock.h> #include <net/net_namespace.h> #define DRV_NAME "gpio-keys" #define BH_SKB_SIZE 2048 #define PFX DRV_NAME ": " #define BH_DEBUG 1 #ifdef BH_DEBUG #define BH_DBG(fmt, args...) printk(KERN_DEBUG "%s: " fmt, DRV_NAME, ##args ) #else #define BH_DBG(fmt, args...) do {} while (0) #endif #define BH_ERR(fmt, args...) printk(KERN_ERR "%s: " fmt, DRV_NAME, ##args ) struct bh_priv { unsigned long seen; }; struct bh_event { const char *name; unsigned int type; char *action; unsigned long seen; struct sk_buff *skb; struct work_struct work; }; struct bh_map { unsigned int code; const char *name; }; struct gpio_keys_button_data { struct delayed_work work; struct bh_priv bh; int last_state; int count; int threshold; int can_sleep; struct gpio_keys_button *b; struct timer_list reset_timer; bool reset_pressed; }; #define NETLINK_GPIO_EVENT 31 struct gpio_netlink_msg{ char button_name[32]; unsigned int event_type; int value; unsigned long timestamp; }; static struct sock *gpio_nl_sk = NULL; extern u64 uevent_next_seqnum(void); #define BH_MAP(_code, _name) \ { \ .code = (_code), \ .name = (_name), \ } static struct bh_map button_map[] = { BH_MAP(BTN_0, "BTN_0"), BH_MAP(BTN_1, "BTN_1"), BH_MAP(BTN_2, "BTN_2"), BH_MAP(BTN_3, "BTN_3"), BH_MAP(BTN_4, "BTN_4"), BH_MAP(BTN_5, "BTN_5"), BH_MAP(BTN_6, "BTN_6"), BH_MAP(BTN_7, "BTN_7"), BH_MAP(BTN_8, "BTN_8"), BH_MAP(BTN_9, "BTN_9"), BH_MAP(KEY_POWER, "power"), BH_MAP(KEY_RESTART, "reset"), BH_MAP(KEY_RFKILL, "rfkill"), BH_MAP(KEY_WPS_BUTTON, "wps"), BH_MAP(KEY_WIMAX, "wwan"), }; /* -------------------------------------------------------------------------*/ static void reset_timer_callback(unsigned long data) { struct gpio_keys_button_data *bdata = (struct gpio_keys_button_data *)data; if (bdata->reset_pressed) { send_gpio_netlink_event("reset", EV_KEY, 1); } } static int bh_event_add_var(struct bh_event *event, int argv, const char *format, ...) { static char buf[128]; char *s; va_list args; int len; if (argv) return 0; va_start(args, format); len = vsnprintf(buf, sizeof(buf), format, args); va_end(args); if (len >= sizeof(buf)) { BH_ERR("buffer size too small\n"); WARN_ON(1); return -ENOMEM; } s = skb_put(event->skb, len + 1); strcpy(s, buf); BH_DBG("added variable '%s'\n", s); return 0; } static int button_hotplug_fill_event(struct bh_event *event) { int ret; ret = bh_event_add_var(event, 0, "HOME=%s", "/"); if (ret) return ret; ret = bh_event_add_var(event, 0, "PATH=%s", "/sbin:/bin:/usr/sbin:/usr/bin"); if (ret) return ret; ret = bh_event_add_var(event, 0, "SUBSYSTEM=%s", "button"); if (ret) return ret; ret = bh_event_add_var(event, 0, "ACTION=%s", event->action); if (ret) return ret; ret = bh_event_add_var(event, 0, "BUTTON=%s", event->name); if (ret) return ret; if (event->type == EV_SW) { ret = bh_event_add_var(event, 0, "TYPE=%s", "switch"); if (ret) return ret; } ret = bh_event_add_var(event, 0, "SEEN=%ld", event->seen); if (ret) return ret; ret = bh_event_add_var(event, 0, "SEQNUM=%llu", uevent_next_seqnum()); return ret; } static void button_hotplug_work(struct work_struct *work) { struct bh_event *event = container_of(work, struct bh_event, work); int ret = 0; event->skb = alloc_skb(BH_SKB_SIZE, GFP_KERNEL); if (!event->skb) goto out_free_event; ret = bh_event_add_var(event, 0, "%s@", event->action); if (ret) goto out_free_skb; ret = button_hotplug_fill_event(event); if (ret) goto out_free_skb; NETLINK_CB(event->skb).dst_group = 1; broadcast_uevent(event->skb, 0, 1, GFP_KERNEL); out_free_skb: if (ret) { BH_ERR("work error %d\n", ret); kfree_skb(event->skb); } out_free_event: kfree(event); } static int button_hotplug_create_event(const char *name, unsigned int type, unsigned long seen, int pressed) { struct bh_event *event; BH_DBG("create event, name=%s, seen=%lu, pressed=%d\n", name, seen, pressed); event = kzalloc(sizeof(*event), GFP_KERNEL); if (!event) return -ENOMEM; event->name = name; event->type = type; event->seen = seen; event->action = pressed ? "pressed" : "released"; INIT_WORK(&event->work, (void *)(void *)button_hotplug_work); schedule_work(&event->work); return 0; } /* -------------------------------------------------------------------------*/ static int button_get_index(unsigned int code) { int i; for (i = 0; i < ARRAY_SIZE(button_map); i++) if (button_map[i].code == code) return i; return -1; } static void send_gpio_netlink_event(const char *name, unsigned int type, int value) { struct sk_buff* skb; struct nlmsghdr *nlh; struct gpio_netlink_msg *msg; int size = sizeof(struct gpio_netlink_msg); int len; int ret = 0; if(!gpio_nl_sk){ BH_ERR("Netlink socket not intialized\n"); return; } len = NLMSG_SPACE(size); skb = alloc_skb(len, GFP_ATOMIC); if(!skb){ BH_ERR("Failed to allocate netlink skb\n"); return; } nlh = (struct nlmsghdr *)skb->data; nlh->nlmsg_len = NLMSG_SPACE(size); nlh->nlmsg_type = 1; nlh->nlmsg_flags = 0; nlh->nlmsg_seq = 0; nlh->nlmsg_pid = 0; msg = (struct gpio_netlink_msg *)NLMSG_DATA(nlh); strncpy(msg->button_name, name, sizeof(msg->button_name)-1); msg->button_name[sizeof(msg->button_name)-1] = '\0'; msg->event_type = type; msg->value = value; msg->timestamp = jiffies; skb_put(skb, NLMSG_SPACE(size)); ret = netlink_broadcast(gpio_nl_sk, skb, 0, 1, GFP_ATOMIC); if(ret < 0){ BH_DBG("Netlink broadcast failed: %d ", ret); kfree_skb(skb); } BH_DBG(" Netlink message send for %s ,value = %d\n", name, value); } static int create_netlink_socket(void) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) struct netlink_kernel_cfg cfg ={ .input = NULL, .groups = 1, }; gpio_nl_sk = netlink_kernel_create(&init_net, NETLINK_GPIO_EVENT, &cfg); #else gpio_nl_sk = netlink_kernel_create(&init_net, NETLINK_GPIO_EVENT, 1, NULL, NULL, THIS_MODULE); #endif if(!gpio_nl_sk){ BH_ERR("Failed to create netlink socket\n"); return -ENOMEM; } BH_DBG("Netlink socket created successfully\n"); return 0; } static void release_netlink_socket(void) { if(gpio_nl_sk){ netlink_kernel_release(gpio_nl_sk); gpio_nl_sk = NULL; } } static void button_hotplug_event(struct gpio_keys_button_data *data, unsigned int type, int value) { struct bh_priv *priv = &data->bh; unsigned long seen = jiffies; int btn; BH_DBG("event type=%u, code=%u, value=%d\n", type, data->b->code, value); if(data->b->code == KEY_RESTART){ if (value) { // 按键按下 data->reset_pressed = true; mod_timer(&data->reset_timer, jiffies + msecs_to_jiffies(6000)); // 6秒计时 BH_DBG("Reset button pressed, timer started"); } else { // 按键释放 if (data->reset_pressed) { del_timer(&data->reset_timer); data->reset_pressed = false; BH_DBG("Reset button released early, timer canceled"); } } priv->seen = seen; return; } if ((type != EV_KEY) && (type != EV_SW)) return; btn = button_get_index(data->b->code); if (btn < 0) return; button_hotplug_create_event(button_map[btn].name, type, (seen - priv->seen) / HZ, value); priv->seen = seen; } struct gpio_keys_button_dev { int polled; struct delayed_work work; struct device *dev; struct gpio_keys_platform_data *pdata; struct gpio_keys_button_data data[0]; }; static int gpio_button_get_value(struct gpio_keys_button_data *bdata) { int val; if (bdata->can_sleep) val = !!gpio_get_value_cansleep(bdata->b->gpio); else val = !!gpio_get_value(bdata->b->gpio); return val ^ bdata->b->active_low; } static void gpio_keys_polled_check_state(struct gpio_keys_button_data *bdata) { int state = gpio_button_get_value(bdata); if (state != bdata->last_state) { unsigned int type = bdata->b->type ?: EV_KEY; if (bdata->count < bdata->threshold) { bdata->count++; return; } if ((bdata->last_state != -1) || (type == EV_SW)) button_hotplug_event(bdata, type, state); bdata->last_state = state; } bdata->count = 0; } static void gpio_keys_polled_queue_work(struct gpio_keys_button_dev *bdev) { struct gpio_keys_platform_data *pdata = bdev->pdata; unsigned long delay = msecs_to_jiffies(pdata->poll_interval); if (delay >= HZ) delay = round_jiffies_relative(delay); schedule_delayed_work(&bdev->work, delay); } static void gpio_keys_polled_poll(struct work_struct *work) { struct gpio_keys_button_dev *bdev = container_of(work, struct gpio_keys_button_dev, work.work); int i; for (i = 0; i < bdev->pdata->nbuttons; i++) { struct gpio_keys_button_data *bdata = &bdev->data[i]; gpio_keys_polled_check_state(bdata); } gpio_keys_polled_queue_work(bdev); } static void gpio_keys_polled_close(struct gpio_keys_button_dev *bdev) { struct gpio_keys_platform_data *pdata = bdev->pdata; cancel_delayed_work_sync(&bdev->work); if (pdata->disable) pdata->disable(bdev->dev); } static irqreturn_t button_handle_irq(int irq, void *_bdata) { struct gpio_keys_button_data *bdata = (struct gpio_keys_button_data *) _bdata; button_hotplug_event(bdata, bdata->b->type ?: EV_KEY, gpio_button_get_value(bdata)); return IRQ_HANDLED; } #ifdef CONFIG_OF static struct gpio_keys_platform_data * gpio_keys_get_devtree_pdata(struct device *dev) { struct device_node *node, *pp; struct gpio_keys_platform_data *pdata; struct gpio_keys_button *button; int error; int nbuttons; int i = 0; node = dev->of_node; if (!node) return NULL; nbuttons = of_get_child_count(node); if (nbuttons == 0) return NULL; pdata = devm_kzalloc(dev, sizeof(*pdata) + nbuttons * (sizeof *button), GFP_KERNEL); if (!pdata) { error = -ENOMEM; goto err_out; } pdata->buttons = (struct gpio_keys_button *)(pdata + 1); pdata->nbuttons = nbuttons; pdata->rep = !!of_get_property(node, "autorepeat", NULL); of_property_read_u32(node, "poll-interval", &pdata->poll_interval); for_each_child_of_node(node, pp) { enum of_gpio_flags flags; if (!of_find_property(pp, "gpios", NULL)) { pdata->nbuttons--; dev_warn(dev, "Found button without gpios\n"); continue; } button = &pdata->buttons[i++]; button->gpio = of_get_gpio_flags(pp, 0, &flags); button->active_low = flags & OF_GPIO_ACTIVE_LOW; if (of_property_read_u32(pp, "linux,code", &button->code)) { dev_err(dev, "Button without keycode: 0x%x\n", button->gpio); error = -EINVAL; goto err_out; } button->desc = of_get_property(pp, "label", NULL); if (of_property_read_u32(pp, "linux,input-type", &button->type)) button->type = EV_KEY; button->wakeup = !!of_get_property(pp, "gpio-key,wakeup", NULL); if (of_property_read_u32(pp, "debounce-interval", &button->debounce_interval)) button->debounce_interval = 5; } if (pdata->nbuttons == 0) { error = -EINVAL; goto err_out; } return pdata; err_out: return ERR_PTR(error); } static struct of_device_id gpio_keys_of_match[] = { { .compatible = "gpio-keys", }, { }, }; MODULE_DEVICE_TABLE(of, gpio_keys_of_match); static struct of_device_id gpio_keys_polled_of_match[] = { { .compatible = "gpio-keys-polled", }, { }, }; MODULE_DEVICE_TABLE(of, gpio_keys_polled_of_match); #else static inline struct gpio_keys_platform_data * gpio_keys_get_devtree_pdata(struct device *dev) { return NULL; } #endif static int gpio_keys_button_probe(struct platform_device *pdev, struct gpio_keys_button_dev **_bdev, int polled) { struct gpio_keys_platform_data *pdata = pdev->dev.platform_data; struct device *dev = &pdev->dev; struct gpio_keys_button_dev *bdev; struct gpio_keys_button *buttons; int error; int i; if (!pdata) { pdata = gpio_keys_get_devtree_pdata(dev); if (IS_ERR(pdata)) return PTR_ERR(pdata); if (!pdata) { dev_err(dev, "missing platform data\n"); return -EINVAL; } pdev->dev.platform_data = pdata; } if (polled && !pdata->poll_interval) { dev_err(dev, "missing poll_interval value\n"); return -EINVAL; } buttons = devm_kzalloc(dev, pdata->nbuttons * sizeof(struct gpio_keys_button), GFP_KERNEL); if (!buttons) { dev_err(dev, "no memory for button data\n"); return -ENOMEM; } memcpy(buttons, pdata->buttons, pdata->nbuttons * sizeof(struct gpio_keys_button)); bdev = devm_kzalloc(dev, sizeof(struct gpio_keys_button_dev) + pdata->nbuttons * sizeof(struct gpio_keys_button_data), GFP_KERNEL); if (!bdev) { dev_err(dev, "no memory for private data\n"); return -ENOMEM; } bdev->polled = polled; for (i = 0; i < pdata->nbuttons; i++) { struct gpio_keys_button *button = &buttons[i]; struct gpio_keys_button_data *bdata = &bdev->data[i]; unsigned int gpio = button->gpio; if (button->wakeup) { dev_err(dev, DRV_NAME "does not support wakeup\n"); return -EINVAL; } error = devm_gpio_request(dev, gpio, button->desc ? button->desc : DRV_NAME); if (error) { dev_err(dev, "unable to claim gpio %u, err=%d\n", gpio, error); return error; } error = gpio_direction_input(gpio); if (error) { dev_err(dev, "unable to set direction on gpio %u, err=%d\n", gpio, error); return error; } bdata->can_sleep = gpio_cansleep(gpio); bdata->last_state = -1; if (bdev->polled) bdata->threshold = DIV_ROUND_UP(button->debounce_interval, pdata->poll_interval); else bdata->threshold = 1; bdata->b = &pdata->buttons[i]; // 初始化复位键定时器 if (button->code == KEY_RESTART) { setup_timer(&bdata->reset_timer, reset_timer_callback, (unsigned long)bdata); bdata->reset_pressed = false; } bdev->dev = &pdev->dev; bdev->pdata = pdata; platform_set_drvdata(pdev, bdev); *_bdev = bdev; return 0; } static int gpio_keys_probe(struct platform_device *pdev) { struct gpio_keys_platform_data *pdata; struct gpio_keys_button_dev *bdev; int ret, i; ret = gpio_keys_button_probe(pdev, &bdev, 0); if (ret) return ret; pdata = pdev->dev.platform_data; for (i = 0; i < pdata->nbuttons; i++) { struct gpio_keys_button *button = &pdata->buttons[i]; struct gpio_keys_button_data *bdata = &bdev->data[i]; if (bdata->can_sleep) { dev_err(&pdev->dev, "skipping gpio:%d, it can sleep\n", button->gpio); continue; } if (!button->irq) button->irq = gpio_to_irq(button->gpio); if (button->irq < 0) { dev_err(&pdev->dev, "failed to get irq for gpio:%d\n", button->gpio); continue; } ret = devm_request_irq(&pdev->dev, button->irq, button_handle_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, dev_name(&pdev->dev), bdata); if (ret) dev_err(&pdev->dev, "failed to request irq:%d for gpio:%d\n", button->irq, button->gpio); else dev_dbg(&pdev->dev, "gpio:%d has irq:%d\n", button->gpio, button->irq); if (bdata->b->type == EV_SW) button_hotplug_event(bdata, EV_SW, gpio_button_get_value(bdata)); } return 0; } static int gpio_keys_polled_probe(struct platform_device *pdev) { struct gpio_keys_platform_data *pdata; struct gpio_keys_button_dev *bdev; int ret; int i; ret = gpio_keys_button_probe(pdev, &bdev, 1); if (ret) return ret; INIT_DELAYED_WORK(&bdev->work, gpio_keys_polled_poll); pdata = bdev->pdata; if (pdata->enable) pdata->enable(bdev->dev); for (i = 0; i < pdata->nbuttons; i++) gpio_keys_polled_check_state(&bdev->data[i]); gpio_keys_polled_queue_work(bdev); return ret; } static int gpio_keys_remove(struct platform_device *pdev) { struct gpio_keys_button_dev *bdev = platform_get_drvdata(pdev); int i; // 清理复位键计时器 for (i = 0; i < bdev->pdata->nbuttons; i++) { if (bdev->data[i].b->code == KEY_RESTART) { del_timer_sync(&bdev->data[i].reset_timer); } } platform_set_drvdata(pdev, NULL); if (bdev->polled) gpio_keys_polled_close(bdev); return 0; } static struct platform_driver gpio_keys_driver = { .probe = gpio_keys_probe, .remove = gpio_keys_remove, .driver = { .name = "gpio-keys", .owner = THIS_MODULE, .of_match_table = of_match_ptr(gpio_keys_of_match), }, }; static struct platform_driver gpio_keys_polled_driver = { .probe = gpio_keys_polled_probe, .remove = gpio_keys_remove, .driver = { .name = "gpio-keys-polled", .owner = THIS_MODULE, .of_match_table = of_match_ptr(gpio_keys_polled_of_match), }, }; static int __init gpio_button_init(void) { int ret; ret = create_netlink_socket(); if (ret) return ret; ret = platform_driver_register(&gpio_keys_driver); if (ret) return ret; ret = platform_driver_register(&gpio_keys_polled_driver); if (ret) platform_driver_unregister(&gpio_keys_driver); return ret; } static void __exit gpio_button_exit(void) { platform_driver_unregister(&gpio_keys_driver); platform_driver_unregister(&gpio_keys_polled_driver); release_netlink_socket(); } module_init(gpio_button_init); module_exit(gpio_button_exit); MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>"); MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>"); MODULE_DESCRIPTION("Polled GPIO Buttons hotplug driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRV_NAME);
10-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值