异步机制(Asynchronous) -- (二)异步消息机制兼谈Hadoop RPC

异步机制(Asynchronous) -- (二)异步消息机制兼谈Hadoop RPC
2011年01月22日
  上篇说了半天,却回避了一个重要的问题:为什么要用异步呢,它有什么样的好处?坦率的说,我对这点的认识不是太深刻(套句俗语,只可意会,不可言传)。还是举个例子吧:
  比如Client向Server发送一个request,Server收到后需要100ms的处理时间,为了方便起见,我们忽略掉网络的延迟,并且,我们认为Server端的处理能力是无穷大的。在这个use case下,如果采用同步机制,即Client发送request -> 等待结果 -> 继续发送,那么,一个线程一秒钟之内只能够发送10个request,如果希望达到10000 request/s的发送压力,那么Client端就需要创建1000个线程,而这么多线程的context switch就成为client的负担了。而采用异步机制,就不存在这个问题了。Client将request发送出去后,立即发送下一个request,理论上,它能够达到网卡发送数据的极限。当然,同时需要有机制不断的接收来自Server端的response。
  以上的例子其实就是这篇的主题,异步的消息机制,基本的流程是这样的:
  
  如果仔细琢磨的话,会发现这个流程中有两个很重要的问题需要解决:
  1. 当client接收到response后,怎样确认它到底是之前哪个request的response呢?
  2. 如果发送一个request后,这个request对应的response由于种种原因(比如server端出问题了)一直没有返回。client怎么能够发现类似这样长时间没有收到response的request呢?
  对于第一个问题,一般会尝试给每个request分配一个独一无二的ID,返回的Response会同时携带这个ID,这样就能够将request和response对应上了。
  对于第二个问题,需要有一个timeout机制,对于每一个request都有一个定时器,如果到指定时间仍然没有返回结果,那么会触发timeout操作。多说一句,timeout机制其实对于涉及网络的同步机制也是非常有必要的,因为有可能client与server之间的链接坏了,在极端情况下,client会被一直阻塞住。
  纸上谈兵了这么久,还是看一个实际的例子。我在这里用Hadoop的RPC代码举例。这里需要事先说明的是,Hadoop的RPC对外的接口其实是同步的,但是,RPC的内部实现其实是异步消息机制。多说无益,直接看代码吧(讨论的所有代码都在org.apache.hadoop.ipc.Client.java 里): public Writable call(Writable param, ConnectionId remoteId) throws InterruptedException, IOException { //具体的代码一会再看... } 这就是Client.java对外提供的接口。一共有两个参数,param是希望发送的request,remoteId是指远程server对应的Id。函数的返回就是response(也是继承自writable)。所以说,这是一个同步调用,一旦call函数返回,那么response也就拿到了。
  call函数的具体实现一会再看,先介绍Client中两个重要的内部类: private class Call { int id; // call id Writable param; // parameter Writable value; // value, null if error IOException error; // exception, null if value boolean done; // true when call is done protected Call(Writable param) { this.param = param; synchronized (Client.this) { this.id = counter++; } } protected synchronized void callComplete() { this.done = true; notify(); // notify caller } //......... public synchronized void setValue(Writable value) { this.value = value; callComplete(); } public synchronized Writable getValue() { return value; } } call这个类对应的就是一次异步请求。它的几个成员变量:
  id: 这个就是之前提过的,对于每一个request都需要分配一个唯一标示符,这样接收到response后才能知道到底对应哪个request;
  param: 需要发送到server的request;
  value: 从server发送过来的response;
  error: 可能发生的异常(比如网络读写错误,server挂了,等等);
  done: 表示这个call是否成功完成了,即是否接收到了response; private class Connection extends Thread { private InetSocketAddress server; // server ip:port // ......... private Socket socket = null; // connected socket private DataInputStream in; private DataOutputStream out; //............ // currently active calls private Hashtable calls = new Hashtable(); // ....... private synchronized boolean addCall(Call call) { if (shouldCloseConnection.get()) return false; calls.put(call.id, call); notify(); return true; } private void receiveResponse() { if (shouldCloseConnection.get()) { return; } touch(); try { int id = in.readInt(); // try to read an id if (LOG.isDebugEnabled()) LOG.debug(getName() + " got value #" + id); Call call = calls.get(id); int state = in.readInt(); // read call status if (state == Status.SUCCESS.state) { Writable value = ReflectionUtils.newInstance(valueClass, conf); value.readFields(in); // read value call.setValue(value); calls.remove(id); } else if (state == Status.ERROR.state) { call.setException(new RemoteException(WritableUtils.readString(in), WritableUtils.readString(in))); calls.remove(id); } else if (state == Status.FATAL.state) { // Close the connection markClosed(new RemoteException(WritableUtils.readString(in), WritableUtils.readString(in))); } } catch (IOException e) { markClosed(e); } } public void run() { if (LOG.isDebugEnabled()) LOG.debug(getName() + ": starting, having connections " + connections.size()); try { while (waitForWork()) {//wait here for work - read or close connection receiveResponse(); } } catch (Throwable t) { LOG.warn("Unexpected error reading responses on connection " + this, t); markClosed(new IOException("Error reading responses", t)); } close(); if (LOG.isDebugEnabled()) LOG.debug(getName() + ": stopped, remaining connections " + connections.size()); } public void sendParam(Call call) { if (shouldCloseConnection.get()) { return; } DataOutputBuffer d=null; try { synchronized (this.out) { if (LOG.isDebugEnabled()) LOG.debug(getName() + " sending #" + call.id); //for serializing the //data to be written d = new DataOutputBuffer(); d.writeInt(call.id); call.param.write(d); byte[] data = d.getData(); int dataLength = d.getLength(); out.writeInt(dataLength); //first put the data length out.write(data, 0, dataLength);//write the data out.flush(); } } catch(IOException e) { markClosed(e); } finally { //the buffer is just an in-memory buffer, but it is still polite to // close early IOUtils.closeStream(d); } } } Connection这个类要比之前的Call复杂得多,所以我省略了很多这里不会被讨论的代码。
  Connection对应于一个连接,即一个socket。但同时,它又继承自Thread,所有它本身又对应于一个线程。可以看出,在Hadoop的RPC中,一个连接对应于一个线程。先看他的成员变量:
  server: 这是远程server的地址;
  socket: 对应的socket;
  in / out: socket的输入流和输出流;
  calls: 重要的成员变量。它是一个hash表, 维护了这个connection正在进行的所有call和它们对应的id之间的关系。当读取到一个response后,就通过id在这张表中找到对应的call;
  再看看它的run()函数。这是Connection这个线程的启动函数,我贴的代码中这个函数没做任何的删减,你可以发现,刨除一些冗余代码,这个函数其实就只做了一件事:receiveResponse,即等待接收response。
  OK。回到call()这个函数,看看它到底做了什么: public Writable call(Writable param, ConnectionId remoteId) throws InterruptedException, IOException { Call call = new Call(param); Connection connection = getConnection(remoteId, call); connection.sendParam(call); // send the parameter boolean interrupted = false; synchronized (call) { while (!call.done) { try { call.wait(); // wait for the result } catch (InterruptedException ie) { // save the fact that we were interrupted interrupted = true; } } if (interrupted) { // set the interrupt flag now that we are done waiting Thread.currentThread().interrupt(); } if (call.error != null) { if (call.error instanceof RemoteException) { call.error.fillInStackTrace(); throw call.error; } else { // local exception throw wrapException(remoteId.getAddress(), call.error); } } else { return call.value; } } } 首先,它创建了一个新的call(这个call是Call类的实体,注意和call()函数的区分),然后根据remoteId找到对应的connection(Client类中维护了一个connection pool),然后调用connection.sendParam()。从前面找到这个函数,你会发现它就是将request写入到socket,发送出去。
  但值得一提的是,它使用的write是最普通的blocking IO,也是同步IO(后面会看到,它读取response也是用的blcoking IO,所以,hadoop RPC虽然是异步机制,但是采用的是同步blocking IO,所以,异步消息机制还采用什么样的IO机制是没有关系的)。
  接下来,调用了call.wait(),将线程阻塞在这里。直到在某个地方调用了call.notify(),它才重新运行起来,然后一通判断后返回call.value,即接收到的response。
  所以,剩下的问题是,到底是哪调用了call.notify()?
  回到connection的receiveResponse函数:
  首先,它从socket的输入流中读到一个id,然后根据这个id找到对应的call,调用call.setValue将从socket中读取的response放入到call的value中,然后调用calls.remove(id)将这个call从队列中移除。这里要注意的是call.setValue,这个函数将value设置好之后,调用了call.notify()!
  好了,让我们再重头将流程捋一遍:
  这里其实有两个线程,一个线程是调用Client.call(),希望向远程server发送请求的线程,另外一个线程就是connection对应的那个线程。当然,虽然有两个线程,但server对应的只有一个socket。第一个线程创建call,然后调用call.sendParam将request通过这个socket发送出去;而第二个线程不断的从socket中读取response。因此,request的发送和response的接收被分隔到不同的线程中执行,而且这两个线程之间关于socket的读写并没有任何的同步机制,因此我认为这个RPC是异步消息机制实现的,只不过通过call.wait()/call.notify()使得对外的接口看上去像是同步。
  好了,Hadoop的RPC介绍完了(虽然我略掉了很多内容,比如timeout机制我这里就没写),说说我个人的评价吧。我认为,Hadoop的这个设计还是挺巧妙的,底层采用的是异步机制,但对外的接口提供的又是一般人比较习惯的同步方式。但是,我觉着缺点不是没有,一个问题是一个链接就要产生一个线程,这个如果是在几千台的cluster中,仍然会带来巨大的线程context switch的开销;另一个问题是对于同一个remote server只有一个socket来进行数据的发送和接收,这样的设计网络的吞吐量很有可能上不去。(一家之言,欢迎指正)
  未完待续~
<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值