如何解决Bitmap OutOfMemory如何解决?

本文介绍了一种改进的Bitmap处理方法,旨在减少内存使用并解决BitmapOutOfMemory问题,特别针对不同分辨率的图像更新场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看了些许文章,有很多都是用到了BitmapFactory.Options,设置里面的一些参数来实现图片的压缩

现在有一个更好的方法来解决Bitmap OutOfMemory的问题,例

比如你的原始bitmap只有176*144,但是画面更新却要352*288,那么每次你都要通过BitmapFactory来进行拉伸。

Matrix matrix = new Matrix(); float Scale_Width =352; float Scale_Height = 288; matrix.postScale(Scale_Width, Scale_Height); Bitmap temp = Bitmap.createBitmap(bitmap, 0, 0, bitmap.getWidth(), bitmap.getHeight(), matrix, true);



然后只要拉伸的过程中,程序就会多分配一块内存来存储拉伸的图像.

那么就极有可能会出现VMbort OutOfMemory,那么怎么解决了,如果想把176*144的图像换成352*288的图像,那么你应该这样做:

Rect rect = new Rect (0,0,176,144); RectF rectf = new RectF(0,0,352,288); canvas.drawBitmap(bitmap_176,rect,rectf,null);

这样就解决了OOM的问题,不会产生新的内存.

### 回答1: GMM-EM算法的伪代码:// 迭代k次 for (k=0; k<K; k++) { // E步骤 // 计算每个样本属于每个模型的概率 for (i=0; i<N; i++) { for (j=0; j<M; j++) { p[i][j] = pi[j]*Gaussian(x[i],mu[j],sigma[j]); } } // 计算每个样本属于每个模型的期望值 for (i=0; i<N; i++) { for (j=0; j<M; j++) { q[i][j] = p[i][j]/sigma[j]; } } // M步骤 // 更新模型参数 for (j=0; j<M; j++) { pi[j] = pi[j] + q[i][j]; mu[j] = mu[j] + q[i][j]*x[i]; sigma[j] = sigma[j] + q[i][j]*(x[i] - mu[j])*(x[i] - mu[j]); } } ### 回答2: GMM-EM(高斯混合模型期望最大化)算法是一种用于估计高斯混合模型参数的迭代优化算法。下面是GMM-EM算法的伪代码: 输入:观测数据X,高斯分量个数K 输出:高斯混合模型的参数 1. 初始化高斯混合模型参数: - 初始化每个高斯分量的均值向量mu_k,协方差矩阵sigma_k和混合系数pi_k - 使用随机值或者其他预设的初始值进行初始化 2. 迭代优化: - 重复以下步骤,直到收敛: 1. Expectation 步骤: - 计算每个样本属于每个高斯分量的后验概率gamma(z_{nk}),即样本x_n由高斯分量k生成的概率 - 使用当前的参数值计算gamma(z_{nk}),即根据当前参数估计后验概率 2. Maximization 步骤: - 更新均值向量mu_k: - 对于每个高斯分量k,计算新的均值mu_k: - mu_k = (sum_n(gamma(z_{nk})*x_n)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和 - 更新协方差矩阵sigma_k: - 对于每个高斯分量k,计算新的协方差矩阵sigma_k: - sigma_k = (sum_n(gamma(z_{nk})*(x_n - mu_k)*(x_n - mu_k).T)) / (sum_n(gamma(z_{nk}))) 其中,sum_n表示对所有样本求和,.T表示矩阵的转置操作 - 更新混合系数pi_k: - 对于每个高斯分量k,计算新的混合系数pi_k: - pi_k = sum_n(gamma(z_{nk})) / N 其中,sum_n表示对所有样本求和,N为样本总数 3. 返回最终的高斯混合模型参数 GMM-EM算法通过交替进行Expectation步骤和Maximization步骤,迭代地优化高斯混合模型的参数,直到收敛到最优参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值