杭电 1711 KMP算法

本文介绍如何使用KMP算法解决序列匹配问题,通过给出具体案例和代码实现,详细解释了KMP算法的核心思想及应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

是一道KMP的水题,,,裸题,,,就是一个简单的模板应用。。。。。。题目:

Number Sequence

Time Limit: 10000/5000 MS (Java/Others)Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3689Accepted Submission(s): 1688


Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.

Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].

Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.

Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1

Sample Output
6 -1

ac代码:用的G++,跑了1000多ms,,,求优化。

#include <iostream> #include <string> #include <cstdio> #include <string.h> using namespace std; const int N=1000005,M=100005; int a[N],b[M],nextt[M]; int n,m; void getnext(){ int i=1,j=0; nextt[1]=0; while(i<m){ if(j==0||b[i]==b[j]){ ++i;++j; if(b[i]!=b[j]) nextt[i]=j; else nextt[i]=nextt[j]; } else j=nextt[j]; } } int kmp(){ int i=1,j=1; while(i<=n&&j<=m){ if(j==0||a[i]==b[j]){ ++i;++j; } else j=nextt[j]; } if(j>m) return i-m; return 0; } int main(){ int kk; scanf("%d",&kk); while(kk--){ memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); memset(nextt,0,sizeof(nextt)); //int n,m; scanf("%d%d",&n,&m); for(int i=1;i<=n;++i) scanf("%d",&a[i]); for(int i=1;i<=m;++i) scanf("%d",&b[i]); getnext(); int flag=kmp(); if(flag==0) printf("-1\n"); else printf("%d\n",flag); } return 0; }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值