Database Connection Pooling with Tomcat

本文探讨了通过配置数据库连接池来提升应用性能的方法。详细介绍了如何设置最大连接数、空闲连接数等参数,并展示了如何调整Tomcat容器的配置文件以应对高并发请求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Software object pooling is not a new concept. There are many scenarios where some type of object pooling technique is employed to improve application performance, concurrency, and scalability. After all, having your database code create a new Connection object on every client request is an expensive process. Moreover, with today's demanding applications, creating new connections for data access from scratch, maintaining them, and tearing down the open connection can lead to massive load on the server.

We can configure a maximum number of DB connections in the pool. Make sure you choose a maximum connection count large enough to handle all of your database connections--alternatively, you can set 0 for no limit. Further, we can set the maximum number of idle database connections to be retained in the pool. Set this value to -1 for no limit. The most optimal performance is attained when the pool in its steady state contains just enough connections to service all concurrent connection requests, without having to create new physical database connections at runtime. We can also specify the maximum time (in milliseconds) to wait for a database connection to become available, which in this example is 10 seconds. An exception is thrown if this timeout is exceeded. You can set this value to -1 to wait indefinitely. Please make sure your connector driver, such as mysql.jar, is placed inside the /common/lib directory of your Tomcat installation.

To achieve performance and high throughput, we also need to fine-tune the container to work under heavy traffic. Here's how we'll configure the Connector element for the maxProcessors and acceptCount parameters in the server.xml file:

<!--  Configuring the request and response endpoints -->
<Connector port="80" maxHttpHeaderSize="8192" maxProcessors="150"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" redirectPort="8443" acceptCount="150"
connectionTimeout="20000" disableUploadTimeout="true" />

Configuring JNDI Reference

In order for JNDI to resolve the reference, we have to insert a <resource-ref> tag into the web.xml deployment descriptor file. We first begin by setting a <listener> tag for registering a ServletContextListener as shown below:


<listener>
<listener-class> com.onjava.dbcp.DBCPoolingListener</listener-class>
</listener>

<!-- This component has a dependency on an external resource-->
<resource-ref>
<description> DB Connection Pooling</description>
<res-ref-name> jdbc/TestDB</res-ref-name>
<res-type> javax.sql.DataSource</res-type>
<res-auth> Container</res-auth>
</resource-ref>

<servlet>
<servlet-name> EnrolledStudents</servlet-name>
<servlet-class> com.onjava.dbcp.CourseEnrollmentServlet</servlet-class>
<load-on-startup> 1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name> EnrolledStudents</servlet-name>
<url-pattern> /enrollment.do</url-pattern>
</servlet-mapping>

This binding is vendor-specific, and every container has its own mechanism for setting data sources. Please note that this is just a declaration for dependency on an external resource, and doesn't create the actual resource. Comprehending the tags is pretty straightforward: this indicates to the container that the local reference name jdbc/TestDB should be set by the app deployer, and this should match with the resource name, as declared in server.xml file.


打算改天把这篇文章给翻译一下,留个记号先


内容概要:本文详细介绍了名为MoSca的系统,该系统旨在从单目随意拍摄的视频中重建和合成动态场景的新视角。MoSca通过4D Motion Scaffolds(运动支架)将视频数据转化为紧凑平滑编码的Motion Scaffold表示,并将场景几何和外观与变形场解耦,通过高斯融合进行优化。系统还解决了相机焦距和姿态的问题,无需额外的姿态估计工具。文章不仅提供了系统的理论背景,还给出了基于PyTorch的简化实现代码,涵盖MotionScaffold、GaussianFusion、MoScaSystem等核心组件。此外,文中深入探讨了ARAP变形模型、2D先验到3D的提升、动态高斯表示、相机参数估计等关键技术,并提出了完整的训练流程和性能优化技巧。 适用人群:具备一定计算机视觉和深度学习基础的研究人员和工程师,特别是对动态场景重建和新视角合成感兴趣的从业者。 使用场景及目标:①从单目视频中重建动态场景的新视角;②研究和实现基于4D Motion Scaffolds的动态场景表示方法;③探索如何利用预训练视觉模型的先验知识提升3D重建质量;④开发高效的动态场景渲染和优化算法。 其他说明:本文提供了详细的代码实现,包括简化版和深入扩展的技术细节。阅读者可以通过代码实践加深对MoSca系统的理解,并根据具体应用场景调整和扩展各个模块。此外,文中还强调了物理启发的正则化项和多模态先验融合的重要性,帮助实现更合理的变形和更高质量的渲染效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值