Database Connection Pooling with Tomcat

本文探讨了通过配置数据库连接池来提升应用性能的方法。详细介绍了如何设置最大连接数、空闲连接数等参数,并展示了如何调整Tomcat容器的配置文件以应对高并发请求。
Software object pooling is not a new concept. There are many scenarios where some type of object pooling technique is employed to improve application performance, concurrency, and scalability. After all, having your database code create a new Connection object on every client request is an expensive process. Moreover, with today's demanding applications, creating new connections for data access from scratch, maintaining them, and tearing down the open connection can lead to massive load on the server.

We can configure a maximum number of DB connections in the pool. Make sure you choose a maximum connection count large enough to handle all of your database connections--alternatively, you can set 0 for no limit. Further, we can set the maximum number of idle database connections to be retained in the pool. Set this value to -1 for no limit. The most optimal performance is attained when the pool in its steady state contains just enough connections to service all concurrent connection requests, without having to create new physical database connections at runtime. We can also specify the maximum time (in milliseconds) to wait for a database connection to become available, which in this example is 10 seconds. An exception is thrown if this timeout is exceeded. You can set this value to -1 to wait indefinitely. Please make sure your connector driver, such as mysql.jar, is placed inside the /common/lib directory of your Tomcat installation.

To achieve performance and high throughput, we also need to fine-tune the container to work under heavy traffic. Here's how we'll configure the Connector element for the maxProcessors and acceptCount parameters in the server.xml file:

<!--  Configuring the request and response endpoints -->
<Connector port="80" maxHttpHeaderSize="8192" maxProcessors="150"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" redirectPort="8443" acceptCount="150"
connectionTimeout="20000" disableUploadTimeout="true" />

Configuring JNDI Reference

In order for JNDI to resolve the reference, we have to insert a <resource-ref> tag into the web.xml deployment descriptor file. We first begin by setting a <listener> tag for registering a ServletContextListener as shown below:


<listener>
<listener-class> com.onjava.dbcp.DBCPoolingListener</listener-class>
</listener>

<!-- This component has a dependency on an external resource-->
<resource-ref>
<description> DB Connection Pooling</description>
<res-ref-name> jdbc/TestDB</res-ref-name>
<res-type> javax.sql.DataSource</res-type>
<res-auth> Container</res-auth>
</resource-ref>

<servlet>
<servlet-name> EnrolledStudents</servlet-name>
<servlet-class> com.onjava.dbcp.CourseEnrollmentServlet</servlet-class>
<load-on-startup> 1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name> EnrolledStudents</servlet-name>
<url-pattern> /enrollment.do</url-pattern>
</servlet-mapping>

This binding is vendor-specific, and every container has its own mechanism for setting data sources. Please note that this is just a declaration for dependency on an external resource, and doesn't create the actual resource. Comprehending the tags is pretty straightforward: this indicates to the container that the local reference name jdbc/TestDB should be set by the app deployer, and this should match with the resource name, as declared in server.xml file.


打算改天把这篇文章给翻译一下,留个记号先


内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值