Problem Description
This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, ... , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number
must be connected to exactly one another. And, no two segments are allowed to intersect.
It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?
It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?
Input
Each line of the input file will be a single positive number n, except the last line, which is a number -1. You may assume that 1 <= n <= 100.
Output
For each n, print in a single line the number of ways to connect the 2n numbers into pairs.
Sample Input
2
3
-1
Sample Output
2
5
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
int n;
#define BASE 10000
#define UNIT 4
#define FORMAT "%04d"
class BigNum{
public:
int a[20];
int length;
BigNum(const int k){ //用小于BASE的k初始化大数
memset(a, 0, sizeof(a));
a[0] = k;
length = 1;
}
BigNum(){
memset(a, 0, sizeof(a));
length = 0;
}
BigNum operator * (const BigNum & B){
BigNum ans;
int i,j,up=0,num;
for(i=0; i<length; i++){
up = 0; //每次循环都要初始化为0
for(j=0; j<B.length; j++){
num = up + a[i] * B.a[j] + ans.a[i+j];
up = num / BASE;
num = num % BASE;
// cout << num << endl;
ans.a[i+j] = num;
}
// cout << up << endl;
if(up > 0)
ans.a[i+j] = up;
}
ans.length = i+j;
while(ans.a[ans.length -1] == 0 && ans.length > 1)
ans.length--;
return ans;
}
BigNum operator /(const int & k) const{ // k < BASE, 对此题适用
BigNum ans;
int down=0,i,num;
for(i=length-1; i>=0; i--){
num = ( (down * BASE) + a[i] ) / k;
down = ( (down * BASE) + a[i] ) % k;
ans.a[i] = num;
}
ans.length = length;
while(ans.a[ans.length-1] == 0 && ans.length > 1)
ans.length -- ;
return ans;
}
void print(){
printf("%d", a[length-1]);
for(int i=length-2; i>=0; i--)
printf(FORMAT,a[i]);
}
};
//f(n) = C(2n,n)/(n+1)
int main(){
BigNum nums[101];
nums[1] = BigNum(1);
nums[2] = BigNum(2);
nums[3] = BigNum(5);
for(int i=4; i<=100; i++){
nums[i] = nums[i-1] * (4*i-2)/(i+1);
}
int n;
while(scanf("%d", &n), n>0){
nums[n].print();
printf("\n");
}
return 0;
}
本文介绍了一种通过算法计算特定游戏中可能的配对方式数量的方法。该算法使用大数运算处理输入,并输出所有可能的非相交配对方案数量。适用于n值范围从1到100的情况。
311

被折叠的 条评论
为什么被折叠?



