可参考这个题
http://blog.youkuaiyun.com/gaotong2055/article/details/9300141
Description
You haveNintegers,A1,A2, ... ,AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbersNandQ. 1 ≤N,Q≤ 100000.
The second line containsNnumbers, the initial values ofA1,A2, ... ,AN. -1000000000 ≤Ai≤ 1000000000.
Each of the nextQlines represents an operation.
"Cabc" means addingcto each ofAa,Aa+1, ... ,Ab. -10000 ≤c≤ 10000.
"Qab" means querying the sum ofAa,Aa+1, ... ,Ab.
Output
You need to answer allQcommands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
#include <iostream>
#include <stdio.h>
using namespace std;
int n,q;
long long tree[400000];
long long add[400000];
int a,b,c;
void build(int l, int r, int k){
add[k] = 0;
if(l==r){
scanf("%lld", &tree[k]);
return;
}
int m = (l+r)/2;
build( l, m, 2*k);
build( m+1, r, 2*k + 1);
tree[k] = tree[2*k] + tree[2*k+1];
}
void down(int k,int m){
if(add[k]){
add[k*2+1] += add[k];
add[k*2] += add[k];
tree[k*2] += (m-m/2) * add[k];
tree[k*2+1] += (m/2) * add[k];
add[k] = 0;
}
}
void update(int l,int r, int k){
if( a <= l && b >= r){ //找到合适的区间
add[k] += c;
tree[k] += (long long)(r - l + 1) * c;
return;
}
down(k, r-l+1); //更新子树
int m = (l+r)/2;
if(a <= m) update(l, m, 2*k);
if(b > m) update(m+1, r, 2*k+1);
tree[k] = tree[2*k] + tree[2*k+1];
}
long long query(int l, int r, int k){
if(a <= l && b >= r)
{
return tree[k];
}
down(k, r-l+1); //查询的时候需要更新子树
long long ans = 0;
int m = (l+r)/2;
if(a <= m)
ans += query(l , m, k*2);
if(b > m)
ans += query(m+1, r, k*2+1);
return ans;
}
int main() {
//freopen("in.txt", "r", stdin);
char cmd[5];
while(scanf("%d %d", &n, &q) != EOF){
build(1, n ,1);
while(q--){
scanf("%s", cmd);
if(cmd[0] == 'Q'){
scanf("%d %d",&a,&b);
printf("%lld\n", query(1,n,1));
}else{
scanf("%d %d %d",&a, &b, &c);
update(1, n, 1);
}
}
}
return 0;
}