转自:http://blog.sina.com.cn/s/blog_5e16f1770100gror.html
align是输入多行公式中最好用的环境,仅仅是个人浅见,因为他的对齐非常灵活,如果大家需要非常灵巧的对齐方式的多行公式,建议使用align环境,对应的也还有align*和aligned等等类似的环境,这里不再详述。下文提供代码,尽展其风姿绰约。
演示效果图:
演示代码:
\documentclass{article}
\pagestyle{empty}
\setcounter{page}{6}
\setlength\textwidth{266.0pt}
\usepackage{CJK}
\usepackage{amsmath}
\begin{CJK}{GBK}{song}
\begin{document}
\begin{align}
<wbr>(a + b)^3<wbr>&= (a + b) (a + b)^2<wbr><wbr><wbr><wbr><wbr><wbr><wbr>\\<br><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>&= (a + b)(a^2 + 2ab + b^2) \\<br><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>&= a^3 + 3a^2b + 3ab^2 + b^3<br> \end{align}<br> \begin{align}<br><wbr>x^2<wbr>+ y^2 & = 1<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>\\<br><wbr>x<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>& = \sqrt{1-y^2}<br> \end{align}<br> This example has two column-pairs.<br> \begin{align}<wbr><wbr><wbr>\text{Compare }<br><wbr>x^2 + y^2 &= 1<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>&<br><wbr>x^3 + y^3 &= 1<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>\\<br><wbr>x<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>&= \sqrt<wbr><wbr>{1-y^2} &<br><wbr>x<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>&= \sqrt[3]{1-y^3}<br> \end{align}<br> This example has three column-pairs.<br> \begin{align}<br><wbr><wbr><wbr>x<wbr><wbr><wbr>&= y<wbr><wbr><wbr><wbr><wbr>& X<wbr>&= Y<wbr>&<br><wbr><wbr><wbr><wbr><wbr>a<wbr>&= b+c<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>\\<br><wbr><wbr><wbr>x'<wbr><wbr>&= y'<wbr><wbr><wbr><wbr>& X' &= Y' &<br><wbr><wbr><wbr><wbr><wbr>a' &= b<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>\\<br><wbr>x + x' &= y + y'<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>&<br><wbr>X + X' &= Y + Y' & a'b &= c'b<br> \end{align}<br><br> This example has two column-pairs.<br> \begin{flalign}<wbr>\text{Compare }<br><wbr>x^2 + y^2 &= 1<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>&<br><wbr>x^3 + y^3 &= 1<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>\\<br><wbr>x<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>&= \sqrt<wbr><wbr>{1-y^2} &<br><wbr>x<wbr><wbr><wbr><wbr><wbr><wbr><wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>