Axis2 Quick Start Guide

本文介绍如何使用Axis2快速搭建和部署一个简单的股票报价服务。通过Java类创建服务,并利用Axis2提供的工具生成WSDL文件,文章详细说明了准备工作、环境配置及服务构建过程。
[b]A Quick Setup Note:[/b]
The code for the document can be found in the extracted Standard Binary Distribution , more specifically at Axis2_HOME/samples/ inside the directories- quickstart, quickstartadb, quickstartaxiom, quickstartjibx and quickstartxmlbeans. (Consider getting it now as it will help you to follow along.) It includes Ant buildfiles (build.xml) that we'll refer to throughout the examples to make compilation easier.

可以从标准Binary版本中找到这篇文档的所有代码,特别是在Axis2_HOME/samples/里的
quickstart, quickstartadb, quickstartaxiom, quickstartjibx and quickstartxmlbeans这几个目录下(可以考虑现在下载它,因为下面都要用到它)它包括Ant 文件(build.xml),这个文件是在使用例子的过程中我们都要用到的,Ant文件使例子的编译更加简单


Let's start with the service itself. We'll make it simple so you can see what is going on when we build and deploy the services. A StockQuoteService example seems to be mandatory in instances like this one, so let's use the following (see Code Listing 1).

我们现在就从它自身的例子开始讲起。我们将尽量简单,以使你能够明白在我们build和deploy服务时,究竟发生了什么。StockQuoteService看起来就是一个这样的例子,所以,让我们从它开始,先看下面的code Listing 1.


Code Listing 1: The StockQuoteService class

package samples.quickstart.service.pojo;

import java.util.HashMap;

public class StockQuoteService {
private HashMap map = new HashMap();

public double getPrice(String symbol) {
Double price = (Double) map.get(symbol);
if(price != null){
return price.doubleValue();
}
return 42.00;
}

public void update(String symbol, double price) {
map.put(symbol, new Double(price));
}
}
It will be a simple service with two possible calls. One of which is an in/out message, and the other is an in-only service. Ultimately, we'll package the service and deploy it in four different ways.

这是一个有两个调用的简单例子。一个是in/out形式,一个只有进的消息。我们最终将打包这个服务,并且用4种不同的方式部署它

First, let's look at how this simple Java class corresponds to a service.
首先,让我们来看看java class文件怎么关联这个服务的

[b]
Getting Ready[/b]
Before we build anything using Axis2, we have to take care of a little housekeeping. First off, you'll need to get your environment ready for working with Axis2. Fortunately, it involves just a few simple steps:

在构建任何与Axis2相关的业务时,我们先要设置一下自己的电脑。你必须搭建好与Axis2一起工作的环境。幸运的是,这只包含几个简单的步骤

Download and install Java (Minimum version is JDK1.4). Set the JAVA_HOME environment variable to the pathname of the directory into which you installed the JDK release.
Download Axis2 and extract it to a target directory.
Copy the axis2.war file to the webapps directory of your servlet engine.
Set the AXIS2_HOME environment variable to point to the target directory in step. Note that all of the scripts and build files Axis2 generates depend on this value, so don't skip this step! Linux users can alternatively run the setenv.sh file in the AXIS2_HOME/bin directory to set the AXIS2_HOME environment variable to the pathname of the extracted directory of Axis2.
In most cases, we're also going to need a WSDL file for our service. Axis2's Java2WSDL can be used to bootstrap a WSDL. To generate a WSDL file from a Java class, perform the following steps:
1.下载并安装java(至少是jdk1.4),设置好java_home环境变量,值就是你安装JDK版本的目录
2.设置AXIS2_HOME变量,让它指向你的安装目录。注意所有的脚本和Axis2产生的构建文件都信赖这个值。千万不能省略这一步。
Create and compile the Java class.
(Windows)
%AXIS2_HOME%\bin\java2wsdl -cp . -cn samples.quickstart.service.pojo.StockQuoteService -of StockQuoteService.wsdl

(Linux)
$AXIS2_HOME/bin/java2wsdl -cp . -cn samples.quickstart.service.pojo.StockQuoteService -of StockQuoteService.wsdl
Generate the WSDL using the command:
Once you've generated the WSDL file, you can make the changes you need. For example, you might add custom faults or change the name of the generated elements. For example, this StockQuoteService.wsdl is in AXIS2_HOME/samples/quickstartadb/resources/META-INF folder, which we'll be using throughout the rest of this guide, replaces the generic parameters created by the generation process.
内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值