AOP的一些基本概念

本文介绍了AOSD(Aspect-Oriented Software Development)的概念及其在软件工程中的应用。阐述了传统软件工程面临的挑战,并提出了AOSD作为一种解决方案,用于更好地管理和组织软件中的关注点。文章还详细解释了AOSD中的关键术语,如aspect、jointpoint、pointcut等。
先说一下AOSD的起源吧

传统的软件工程有一个不变的主题:对关注点的分解和局部化。将系统分解成为主要的功能模块,识别出关注点的其他问题,确保所有关注点的问题都能在代码的适当位置得到解决。但是关注点的分散和混杂又给代码编写和后期维护带来了很大的难度。
因此,必须有一种方法可以把关注点集中在一起,让系统开发者可以使用关注点自身的模块来描述每个关注点的行为。
AOSD,用以寻找软件系统中新的模块化特性,允许对系统中多个关注点进行独立描述,同时又能自动统一到系统中。

然后是一些常用的术语(from AOSD wiki):

concern(关注点):A concern is an area of interest or focus in a system. Concerns are the primary criteria for decomposing software into smaller, more manageable and comprehensible parts that have meaning to a software engineer.

crosscutting(横切):Note that crosscutting is a relationship between representations of concerns. Note also that it is a symmetric relationship. Therefore, if:

1. A is a representation of one a concern,
2. B is a representation of another concern, and
3. A crosscuts B,

then B also crosscuts A.

This means that the term "crosscutting concerns" is often misused in two ways: To talk about a single concern, and to talk about concerns rather than representations of concerns. Consider "synchronization is a crosscutting concern": we don't know that synchronization is crosscutting unless we know what it crosscuts. And there may be representations of the concerns involved that are not crosscutting.

aspect(方面):Aspects are one kind of concern in software development.

joint point(联接点):Join points are those elements of the programming language semantics which the aspects coordinate with. Nowadays, there are various join point models around and still new under development. They heavily depend on the underlying programming language and AO language.

In a number of presently available AOP languages, a join point is a region in the dynamic control flow of an application. Thus a join point can for instance represent

* a call to a method,
* execution of a method,
* the event of setting a field,
* the event of handling an exception ...

Join points can be picked up by an AOP program by using pointcuts to match on them. Depending on the pointcut language the AOP language provides, it may be possible to pick up more or less of those join points. Since join points are dynamic, it may be possible to expose runtime information such as the caller or callee of a method from a join point to a matching pointcut.

advice:In a number of AOP languages, advice consists of a pointcut and a body. The body executes at join points the pointcut matches. This pointcut may expose runtime information to the advice body.

pointcut:

(from Without EJB):A set of join points,defined to specify when an advice should fire.Pointcuts are often described using either regular expressions or another wildcard syntax.

(from Wiki)In a number of AOP languages, a pointcut is a predicate over dynamic join points, meaning that given a certain dynamic join point, a pointcut can either match this join point or not (at runtime). Another view of pointcuts is often, that they represent sets of join points. A pointcut may expose runtime information to a piece of advice.

Weaving:The process of coordinating aspects and non-aspects. Weaving can be done explicitly or implicitly, and can be done at a variety of times ranging from by-hand weaving when code is written, through compile-time, post-compile time and load time, up to runtime.

Without EJB中有个例子很好的解释了一下上面的术语:

public class MyBusinessObject implements BusinessObject{
public void businessMethod1() throws UnauthorizedException{
doSecurityCheck();
}
public void businessMethod2() throws UnauthorizedException{
doSecurityCheck();
}
public void requiresNoSecurityCheck() {
}
public void doSecurityCheck() throws UnauthorizedException{
}
}

这里,安全检查就是一个aspect,需要进行安全检查的这几个方法就是join point。而由于不是所有的方法都需要进行安全检查,所以就需要用pointcut来进行匹配。

下面使用了一个interceptor来将关注点模块化:

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class SecurityInterceptor implements MethodInterceptor{
public Object invoke(MethodInvocation invocation)throws Throwable{
doSecurityCheck();
return invocation.proceed();
}
public void doSecurityCheck{}
}

这里的interceptor就是advice
内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值