[转]兰迪.波许的最后讲座:真正实现你童年的梦想(中英文对照)1

Randy Pausch’s Last Lecture: Really Achieving Your Childhood Dreams

Given at Carnegie Mellon University

Tuesday, September 18, 2007

McConomy Auditorium

For more information, see www.randypausch.com

Copyright Randy Pausch, 2007(This is temporary; we will be doing a creative commons license or some such; for now, please consider this footnote your permission to use this transcript for any personal or non-commercial purposes. -- Randy)

Note that this transcript is provided as a public service but may contain transcription errors.

This translation was done by Lichao Chen (chenlc03@hotmail.com); I don't read Chinese, so I cannot verify it.Randy

This translation is far from perfect and I presented it in the sprit of old Chinese sayingthrowing a brick to attract jade.Any comments, suggestions and corrections are highly appreciated. Lichao

译文可能有诸多不当 ,疏漏之处。但抛砖引玉, 望读者不悋指正。

兰迪.波许的最后讲座 :真正实现你童年的梦想

2007918,星期二 , 于卡内基 .梅隆大学

Introduction by Indira Nair, Carnegie Mellon's Vice Provost for Education:

卡内基.梅隆大学副教务长英迪拉.内尔

Hi. Welcome. It's my pleasure to introduce you to the first of our new university's lectures titled Journeyslectures in which members of our community will share with us reflections and insights on their personal and professional journeys. Today's Journey's lecture as you all know is by Professor Randy Pausch. The next one is on Monday, September 24th by Professor Roberta Klatzky.

嗨。欢迎大家。我很高兴向大家介绍我们大学的题为旅途的新系列讲座的首场演讲 -这些演讲是我们的社团成员与我们一起分享他们对个人和专业旅途的思考和洞察。今天旅途演讲的主讲人,你们都知道 ,是兰迪 .波许教授。下一个是 924,星期一 ,罗伯塔 .克莱兹基教授。

To introduce Professor Randy Pausch, our first Journeys speaker, I would like to introduce Randy's friend and colleague, Steve Seabolt. Steve has been at Electronic Arts for six years and is the Vice President of Global Brand Development for The Sims label at Electronic Arts. As you all know, The Sims is one of the most, if not the most successful PC games in the world, with sales approaching over 100,000. Prior to that, Steve was the Vice President for Strategic Marketing and Education at EA, bridging academia and Electronic Arts. His goal was to work with academics so there was an effective educational pathway for kids with building games as their dreams. It was in that role that Randy and Steve became colleagues and friends. Before Electronic Arts, Steve was the worldwide Ad Director for Time Magazine and CEO of Sunset Publishing, which is a very favorite magazine in the Southwest, and as CEO there, one of the things he started was school tours, because like Randy he shares a passion for inspiring kids of all ages to share their excitement for science and technology.

要介绍兰迪.波许教授, 我们旅途演讲的第一位主讲人,我希望先介绍兰迪的朋友和同事, 史蒂夫.西伯特。史蒂夫在艺电公司六年,是负责该公司"模拟人生"游戏全球品牌发展的副总裁。你们都知道, “模拟人生”起码来说,是世界上最成功的个人计算机游戏之一, 销售了接近十万套。在那之前, 史蒂夫是艺电公司的战略行销和教育副总裁, 与学术界沟通。他的目标是同学术界一起为梦想创造计算机游戏的孩子们找到一条有效的教育途径。因此,兰迪和史蒂夫成为了同事和朋友。在加入艺电公司之前, 史蒂夫是时代杂志世界广告部的主任和"日落出版",一本在西南地区非常受喜爱的杂志,的总经理。在任总经理期间, 他开始做的一件事是参观学校, 因为他和兰迪一样都热望让所有上进孩子们能分享他们对科技的热情。

So to introduce Randy, his friend Steve Seabolt. Steve?

, 由兰迪朋友史蒂夫.西伯特来作介绍 。史蒂夫?

[applause]

[掌声]

Steve Seabolt, Vice President of Worldwide Publishing and Marketing for Electonic Arts (EA):

史蒂夫.西伯特 ,艺电公司世界出版行销副总裁

Thank you very much. I don't mean to sound ungracious by correcting you......

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤算法的研究与对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合与前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性与系统可靠性。此外,文章指出BEV模型落地面临大算力依赖与高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注与长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性与经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构与数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型与算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析与系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑与数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值