rands函数的用法

有如下程序,

clc; clear; [a,b]=rands(5,1); a b [c,d]=rands(1,5); c d

输出如下:

a =

-0.5749
0.6785
0.2576
-0.7325
-0.5857


b =

0.2144
0.2598
-0.2590
0.1503
-0.0972


c =

-0.9122 -0.9456 -0.3746 -0.9743 -0.2321


d =

0.3662

有关rands函数说明如下:

rands

Symmetric random weight/bias initialization function
Syntax
W = rands(S,PR)
M = rands(S,R)
v = rands(S);

Description

rands is a weight/bias initialization function.
rands(S,PR) takes,
S -- Number of neurons
PR -- R x 2 matrix of R input ranges
and returns an S-by-R weight matrix of random values between -1 and 1.
rands(S,R) returns an S-by-R matrix of random values. rands(S) returns an S-by-1 vector of random values.
Examples

Here three sets of random values are generated with rands. rands(4,[0 1; -2 2])
rands(4)
rands(2,3)

Network Use

To prepare the weights and the bias of layer i of a custom network to be initialized with rands Set net.initFcn to 'initlay'. (net.initParam will automatically become initlay's default parameters.) Set net.layers{i}.initFcn to 'initwb'. Set each net.inputWeights{i,j}.initFcn to 'rands'. Set each net.layerWeights{i,j}.initFcn to 'rands'. Set each net.biases{i}.initFcn to 'rands'.
To initialize the network call init


没有说明,如何出现上述结果,百度之:

function [w,b] = rands(s,pr)

%RANDS Symmetric random weight/bias initialization function.

%

% Syntax

%

% W = rands(S,PR)

% M = rands(S,R)

% v = rands(S);

%

% Description

%

% RANDS is a weight/bias initialization function.

%

% RANDS(S,PR) takes,

% S - number of neurons.

% PR - Rx2 matrix of R input ranges.

% and returns an S-by-R weight matrix of random values between -1 and 1.

%

% RANDS(S,R) returns an S-by-R matrix of random values.

% RANDS(S) returns an S-by-1 vector of random values.

%

% Examples

%

% Here three sets of random values are generated with RANDS.

%

% rands(4,[0 1; -2 2])

% rands(4)

% rands(2,3)

%

% Network Use

%

% To prepare the weights and the bias of layer i of a custom network

% to be initialized with RANDS:

% 1) Set NET.initFcn to 'initlay'.

% (NET.initParam will automatically become INITLAY's default parameters.)

% 2) Set NET.layers{i}.initFcn to 'initwb'.

% 3) Set each NET.inputWeights{i,j}.initFcn to 'rands'.

% Set each NET.layerWeights{i,j}.initFcn to 'rands';

% Set each NET.biases{i}.initFcn to 'rands'.

%

% To initialize the network call INIT.

%

% See also RANDNR, RANDNC, INITWB, INITLAY, INIT



% Mark Beale, 1-31-92

% Revised 12-15-93, MB

% Revised 11-31-97, MB

% Copyright 1992-2008 The MathWorks, Inc.

% $Revision: 1.1.6.7 $ $Date: 2008/06/20 08:04:33 $



fn = mfilename;

if (nargin < 1), error('NNET:Arguments','Not enough arguments.'); end

if ischar(s)

switch(s)

case 'name'

w = 'Midpoint';

otherwise, error('NNET:Arguments',['Unrecognized code: ''' s ''''])

end

return

end



if nargin == 1

r = 1;

elseif size(pr,2) == 1

r = pr;

else

r = size(pr,1);

end

w = 2*rand(s,r)-1;//注意




% **[ NNT2 Support ]**

if nargout == 2

b = 2*rand(s,1)-1; //注意


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值