[ref]
[url]https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes[/url]
[url]https://leetcode.com/discuss/34622/my-c-solutions-in-44ms-time-nearly-o-n-and-space-nearly-o-n[/url]
[url]https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes[/url]
[url]https://leetcode.com/discuss/34622/my-c-solutions-in-44ms-time-nearly-o-n-and-space-nearly-o-n[/url]
public class Solution {
// https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
// https://leetcode.com/discuss/34622/my-c-solutions-in-44ms-time-nearly-o-n-and-space-nearly-o-n
public int countPrimes(int n) {
if (n < 3) return 0;
int sqrtN = (int)Math.sqrt(n); // trick 0: use sqrt
int counter = n / 2; //trick 1: all even num except 2 is not prime
boolean[] prime = new boolean[n];
for (int i = 1; i < n; i += 2)
prime[i] = true;
for (int i = 3; i <= sqrtN; i += 2) { // trick 2: skip even num
if (prime[i]) {
// mark multiples of i not prime
for (int j = i * i; j < n; j += i) { // trick 3: start from i*i
if (prime[j]) {
prime[j] = false;
counter--; // trick 4: avoid another loop
}
}
}
}
return counter;
}
}